L'SUEE 4755 Homework 3 Due: 25 September 2018

your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw03.v.

Homework Overview
The sorting networks from Homework assignments 1 and 2 sorted keys only, and they only sorted
unsigned integer keys. In this assignment sorter inputs will consist of keys and data, and those keys
can be signed integers or floating-point values. The only module to be modified for this assignment
is sort2.

Module sort2 has two inputs, a0 and al, and parameters w, k, exp, and sig. Parameter
w is the total size of each input, k is the size of the key, exp is size of the exponent (for FP
keys) and sig is the size of the significand (for FP keys). All sizes are in bits. Each input
consists of data, in bit positions w-1:k+1, a key type, in bit position k, and a key, in bit po-
sitions k-1:0. If bit k is zero the key is a signed integer in 2’s complement representation. If
bit k is one the key is a FP value in a format similar to IEEE 754: Bit k-1 is the sign, bits
k-2:sig are the exponent, and bits sig-1:0 are the significand. For a description of these fields
see the floating-point modules in the ChipWare documentation (linked to the course references

function in the testbench code, this function converts this floating-point representation to a value.

In the unmodified file the sort2 module compares the inputs as unsigned integers. This is
wrong because the high bits of each input are data, not the keys. The mux connections are correct
because each input should be sent to the appropriate output unmodified. The solution to the
problems below involve setting ¢ (the mux select signal) to the correct value.

Testbench Code
The testbench for this assignment, which can be run when visiting the file in Emacs in a properly
set-up account by pressing , tests module sort2 at two different sizes and using a mix of input
types. It first tries integer-only keys (labeled ii in the output), then floating-point only keys
(labeled ££), and finally integer/FP keys (labeled if). It reports the first five errors of each type,
and for each module size reports a tally by type.

Here is a transcript showing the start of the testbench (after the compiler’s own messages):

Starting testbench for w=32, k=16, exp=6 sig width=9...
Test ii 3, error (x0,x1): (462cf78c,7cfcf78b) != (7cfcf78b,462cf78c) correct.

a0: data 462c, key -2164.00000 = INT ’hf78c

al: data 7cfc, key -2165.00000 = INT ’*hf78b

To re-run paste: tests.push_back(’h462cf78c); tests.push_back(’h7cfcf78b);
Test ii 4, error (x0,x1): (72aed2ac,d512d2aa) != (d512d2aa,72aed2ac) correct.

a0: data db512, key -11606.00000 = INT ’hd2aa

al: data 72ae, key -11604.00000 = INT ’hd2ac

To re-run paste: tests.push_back(’hd512d2aa); tests.push_back(’h72aed2ac);

The transcript above shows two errors, both for integer key pairs. The first line shows the
actual output followed by the correct output (labeled correct). The number before error is a

1


https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2018/hw03.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/ref.html
https://www.ece.lsu.edu/koppel/v/2018/hw03.v.html

test number, these start at zero and go up to num_tests-1 (see the testbench code). The next
two lines show the input values broken into data and key, including the value and representation
details. The last line of each error report has text that can be put into the testbench code so that
particular test can be re-run as one of the first tests.

The testbench tests the sort2 module at two sizes. At the end of the code for each is a tally
of the number of errors:

Done with 3000000 tests for k=16, exp=6: 499679 ff errs, 499666 if errs, 499400
ii errs,

In the sample above there are many errors for each type of test. Here is the output when all
tests pass:

Starting testbench for w=32, k=16, exp=6 sig width=9...
Done with 3000000 tests for k=16, exp=6: 0 ff errs, 0 if errs, 0 ii errs,
Starting testbench for w=24, k=14, exp=b sig width=8...
Done with 3000000 tests for k=14, exp=5: 0 ff errs, 0 if errs, 0 ii errs,

All done.

Debugging

To debug your code identify an error that looks easy to figure out and copy the text to the right
of paste: into the testbench_size module near the comment Add tests below. Also change
the value of num_tests to a small number, say 3. (Don’t forget to change it back!) Verify that
the code fails on test 0 (or some other small number). Next, run SimVision: irun -gui hw03.v.
Locate your module (it will be under t1 or t2) and copy symbols from s2 to the waveform viewer.

Synthesis
The synthesis script, syn.tcl, will synthesize sort2 with two delay targets, an easy 10 ns and a un-
achievable 0.1 ns. If the module doesn’t synthesize —.001 s is shown for the delay. The script is run
using the shell command genus -files syn.tcl, which invokes Cadence Genus. In past semesters
Cadence RTL Compiler (rc) was used, which would be invoked using rc¢ -files syn.tcl, but
that won’t work on the 2018 homework assignments.

The synthesis script shows area (cost), delay, and the delay target in a neat table. Additional
output of the synthesis program is written to file spew.log. Sample synthesis script output appears
below:

Problem 1: Complete module sort2 so that it correctly sorts inputs with signed integer keys.
Avoid unnecessarily costly or slow designs.

Problem 2: Complete module sort2 so that it also correctly sorts inputs with floating-point keys.
Instantiate at least one ChipWare module, it’s okay to use more. When adding ChipWare modules
be sure to put in an include directive at the end of the file. Avoid unnecessarily costly or slow
designs.

Problem 3: Complete module sort2 so that it also correctly sorts inputs when one key is a
signed integer and the other is floating point. Avoid unnecessarily costly or slow designs. Try to
avoid solutions that use a larger significand than is specified by the parameters or other brute-force
approaches.


https://www.ece.lsu.edu/koppel/v/proc.html

