Sequential Logic Introduction >> Topics

Synthesis of Sequential Logic from Behavioral Code

Topics in This Set
Sequential Logic Basics, Differences with Combinational Logic
Coding of Registers
Simple example: counters.

Sequential shifter example.



Sequential Logic Introduction >> Differences Between Sequential and Combinational Logic
Sequential v. Combinational Logic
It’s all about the flip-flop.

Storage devices are the distinguishing feature ...
... that differentiate combinational and sequential logic.

Combinational Logic
Outputs only depend on current inputs.

No flip-flops, registers, or other devices that have state.

Sequential Logic
Outputs depend on current and past input.
Has state. Typically state kept by flip-flops and/or registers.

State changes usually synchronized with a clock.



Sequential Logic Introduction > Sequential Logic is Harder
Why sequential logic is so much harder than combinational logic.

Inference: There isn’t an operator that synthesizes to a flip-flop ...

. as there is, say, with + for addition.

Logic Design: Designs are trickier ...

... it’s not just what will happen ...

... it’s not even just when it will happen ...

... but whether this happens before that or after that.

Verilog Subtleties: Those ignorant of Verilog timing may be tormented. ..

... with seemingly arbitrary errors or behavior.



Inference of Registers >> Genus’ Generic Flip-Flop
Inference of Registers

Genus’ Generic Flip-Flop: flop.

flop features: apre STl
Is positive edge triggered (clk).

clk flop

Has input d and output g.
Has asynchronous preset (apre) and clear (alcr). d

Has a sync. enable (sena) input.
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Inference of Registers >> Genus’ Generic Flip-Flop

Inference and Technology Mapping apre Srl
During elaboration f1lop used for all inferred edge-triggered reg-

isters. clk f|0p
During technology mapping flop replaced with registers from

technology library. d
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Inference of Registers > Classroom Hardware Diagrams
Classroom Hardware Diagrams
The term register will be used for one or more flip-flops.

For inferred and optimized hardware. ..

... will use streamlined diagrams, omitting unused inputs:
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Inference of Registers > Edge-Triggered Flip-Flop Inference > Inference Review
Edge-Triggered Flip-Flop Inference

Inference

Selecting a hardware component corresponding to a piece of Verilog behavioral code.
Performed by a synthesis program.

Relationship between behavioral Verilog and inferred hardware . ..
. is determined by the synthesis program. ..
. not by the Verilog standard or any other standard document.



Inference of Registers > Edge-Triggered Flip-Flop Inference > Rules
Edge-Triggered Flip-Flop Inference Rules

These Inference Rules

Based on Cadence Genus

Reference: Genus HDL Modeling Guide Version 19.1, May 2019.

For inference of edge-triggered register R clocked by clk:
R must be a variable type.

R must be assigned in exactly one always block ...
... and must be either consistently blocking (R=x;) ...

... or consistently non-blocking (R<=x; ).
The always block must start with always or always ff.

The always must be followed by an event control of the form @( posedge clk,

co).



Inference of Registers > Coding Common Edge-Triggered Registers > Simple

register

Simple Edge-Triggered Register

module register
#( int width = 16 )
( output logic [width-1:0] val,
input uwire [width-1:0] data,
input uwire clk );

L data val

.
0
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always_ff Q@( posedge clk ) val <= data;
endmodule

clk

val 0%7 % %9




Inference of Registers > Coding Common Edge-Triggered Registers > With Enable

Register with Enable

module register_en
#( int width = 16 )
( output logic [width-1:0] val,
input uwire enable,
input uwire [width-1:0] data,
input uwire clk );

always_ff @( posedge clk )
if ( enable ) val <= data;

endmodule
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Simple Example Circuits: Clocks > Clock with Reset

Clock with Reset

Note multiple ¢ values.

count_reset

module count_reset _ reset

C
16'd1

16'd0

C
Do

A

|

m
#( int bits = 16 )

( output logic [bits-1:0] c,
input uwire reset, clk
-

[

input uwire clk ); u

|
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always_ff Q@( posedge clk ) if ( reset ) c <= 0; else c <= ¢ + 1;

endmodule



Simple Example Circuits: Clocks > Clock with Threshold >> Version One

count_thd
Threshold Output

(mm|
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module count_thd
#( int bits = 16 )
( output logic [bits-1:0] c,
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output logic over_th, clk _]/\ E'
input uwire [bits-1:0] threshold, £ 8
input uwire clk );
always_ff @( posedge clk ) t 0 1 2
begin [+ clk
c =c+ 1; T -
over_th = ¢ > threshold; cF 1 Xz
end
endmodule
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Simple Example Circuits: Clocks > Clock with Threshold >> Version One’s Problems

Two Issues:
Critical path through adder/comparison unit.

Do we really want a flip-flop for over_th?

count_thd
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Simple Example Circuits: Clocks > Clock with Threshold >> Faster Version

Fix critical path issue.

module count_thd_ alt2
#( int bits = 16 )
( output logic [bits-1:0] c,
output logic over_th,
input uwire [bits-1:0] threshold,
input uwire clk );

always_ff @( posedge clk )
begin

T Ploysaays
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over_th = ¢ > threshold;
c =c+ 1; clk
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g
Ll

|
L

H

over th

l_

Ll

endmodule



Simple Example Circuits: Clocks > Clock with Threshold > Alternative Threshold Behavior

React any time to threshold, not just at positive edge.

module count_thd alt
#( int bits = 16 )
( output logic [bits-1:0] c,
output logic over_th,

count_thd_alt

16'd1 JAN
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input uwire [bits-1:0] threshold, 5
input uwire clk ); é
3
always_ff ©@( posedge clk ) c <= c + 1; Y
e
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always_comb over_th = ¢ > threshold;
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Inference Examples > 2018 Final Exam Problem 3
Show inferred logic for the following:
module MisC #( int n = 8 )
( output logic [n-1:0] a, g, e,
input uwire [n-1:0] b, ¢, j, f,
input uwire clk );

logic [n-1:0] z;

always_ff Q@( posedge clk ) begin

a<=b+c; // Note: nonblocking assignment.
z=a+ j;
g = z;

end

always_comb begin
e = a *x £f;
end

endmodule



Inference Examples > 2018 Final Exam Problem 3

Show inferred logic for the following: (solution)

module mMisC #( int n = 8 ) j
( output logic [n-1:0] a, g, e, H
input uwire [n-1:0] b, ¢, j, f,
input uwire clk ); T b
logic [n-1:0] z; +
¢ e
always_ff @( posedge clk ) begin r-lf i\zf/) H
a<=b+ c; // Note: nonblocking assignment. - Ik
z=a+ j; C
¢ = z; _EH_.
end

always_comb begin
e = a *x £f;
end

endmodule



Inference Examples > 2018 Midterm Exam Problem 2
Show inferred logic for the following:

module regs

#( int w = 10, int k1 = 20, int k2 = 30 )

( output logic [w-1:0] v,
input logic [w-1:0] b, c,
input uwire clk );

logic [w-1:0] a, x, z;

always_ff Q@( posedge clk ) begin
a=>b + c;
if (a>kl ) x=D>b+ 10;

if (a>k2 ) z
y =X + z;

b + x; else z =

end

endmodule

cC - X;



Inference Examples > 2018 Midterm Exam Problem 2

Show inferred logic for the following: (solution)

regs, w, k1, k2

module regs always ff @ ( posedge clk )

LI

#( int w = 10, int k1 = 20, int k2 = 30 ) X
( output logic [w-1:0] v, 10 hE
input logic [w-1:0] b, c, b _;KEE)
input uwire clk ); -
w
logic [w-1:0] a, x, z; 1w
L_lc/
always_ff Q@( posedge clk ) begin
a=>b + C; —EHC_"(
if (a>kl ) x=D>b+ 10;

if (a>k2 ) z
y =X + 2z;

b + x; else z = ¢c - x;

end

endmodule



Pipelined Computation >> Illustrative Example

Consider the following similar multiply /accumulate modules:

module macl #( int wa = 32, wh = 16 )
( output logic [wa-1:0] ao,
input uwire [wh-1:0] h, input uwire [wa-1:0] ai,
input uwire clk );

always_ff ©@( posedge clk ) ao <= h * ai + ao;
endmodule

module mac2 #( int wh = 4, wa = 3 )
( output logic [wa-1:0] ao,
input uwire [wh-1:0] h, input uwire [wa-1:0] ai,
input uwire clk );

logic [wa-1:0] p;

always_ff Q@( posedge clk ) begin
p <= h * ai;
ao <= p + ao;
end
endmodule



Pipelined Computation >> Illustrative Example

Consider the following similar multiply /accumulate modules:

module macl #( int wa = 32, wh = 16 )
( output logic [wa-1:0] ao,

input uwire [wh-1:0] h, input uwire [wa-1:0] ai,

input uwire clk );

always_ff Q@( posedge clk ) ao <= h * ai + ao;
endmodule

module mac2 #( int wh = 4, wa = 3 )
( output logic [wa-1:0] ao,

input uwire [wh-1:0] h, input uwire [wa-1:0] ai,

input uwire clk );

logic [wa-1:0] p;
always_ff Q@( posedge clk ) begin

p <= h * ai;
ao <= p + ao;
end

endmodule
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Sequential Shifter Design
Example: Sequential Shifter

Remember: We can build a w-bit shifter using ...

... [lgw] 2'-bit fixed-amount shifters and 2-input muxen ...

. for i e {2021 22 . 2llewl=11
Why not use one fixed shifter and use it up to w — 1 times?

Why not use fewer than [lgw]| shifters and muxen ...
... but use them multiple times?

We’ll start with one fixed shifter.

Idea sketch for sequential shifter.

Pass value through shifter amt times.

shift_It_seq

sf amt trips

shift_fixed | \thru shifter

shifted

unshifted -
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£
shifted \| <
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unshifted
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amt
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clk
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’_Lready
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Sequential Shifter Design

Idea sketch for sequential shifter.

=

(mm|

“unshifted

(mm|
LH

clk

shift_It_seq
sf
shift_fixed
unshifted 8 3
& &
shifted \I < <
1]
J | ]
]
J_J J
C
O
cnt
>
T
©
1]
|
1]
| ]

Use register cnt to count number of times.



Sequential Shifter Design

Timing.

1: External device provides inputs.

Inputs assumed to be available. ..
... early in clock cycle.
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Sequential Shifter Design

Timing.

2: At positive edge:
cnt initialized to amt.

shifted initialized to unshifted.
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Sequential Shifter Design

Timing.

3: Early in Cycle 1:

ready goes to zero.
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Sequential Shifter Design

Timing.

4: During cycles 1 and 2:

New value of count is com-
puted, “shift” performed.
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Sequential Shifter Design

Timing.

5: Beginning of cycle 3:

Ready signal set to 1.
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Sequential Shifter Design

Notes about behavior.
Start signal must be stable at
positive edge.

Inputs required to be avail-
able early in clock cycle.

Result available at beginning
of clock cycle.

Ready signal available early
in clock cycle.

[+ clk

. Cycle i Cycle :

0

1

Cycle :

2

3

[4 start

M

@

Cycle :

[4 amt

unsh-

[+ ifted

=

shift_It_seq

sf

shift_fixed

unshifted

shifted \I

shifted

shifted

cnt

ready ]

i

Junshifted

cnt

| i
[ [

shifted £1

clk

cnt

ready

il
[




Sequential Shifter Design

Sequential Shifter Verilog

module shift_It_seq #( int wid_lg = 4, int wid = 1 << wid_lg )
( output logic [wid-1:0] shifted,
input [wid-1:0] unshifted,
input start, input clk );

output uwire ready,
input [wid_1g-1:0] amt,

uwire [wid-1:0] sf_out;
shift_fixed #(wid_1g,1) sf( sf_out, shifted, 1’bl ); // Fixed Shifter

logic [wid_1g-1:0] cnt;

always_ff ©( posedge clk )
if ( start == 1 ) begin

shifted = unshifted; // Load a new item to shift
cnt = amt; // .. and initialize amount.

end else if ( cnt > 0 ) begin

shifted = sf_out; // Shift by one more bit

cnt——; // .. and update count.

end

assign ready = cnt == 0; // Set ready to 1 when count is zero.

endmodule
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Sequential Shifter Design

Inferred Hardware, No Optimization

module shift It seq

#( int wid_lg = 4, int wid = 1 << wid_1lg )

( output logic [wid-1:0] shifted,

output uwire ready,

input [wid-1:0] unshifted,

input [wid_1g-1:0] amt,

input start, input clk );

uwire [wid-1:0]

sf_out;

shift_fixed #(wid_lg,1) sf(sf_out,shifted,

logic [wid_1g-1:0] cnt;

always_ff Q@( posedge clk )
if ( start == 1 ) begin

shifted = unshifted;
cnt = amt;

end else if ( cnt > 0 ) begin

shifted = sf_out;
cnt——;

end else begin shifted = shifted;

assign ready = cnt == O;

endmodule

cnt

1);

cnt; end

shift_It_seq
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shift_fixed
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amt=1
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Sequential Shifter Design

Inferred Hardware, No Optimization
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Sequential Shifter Design

Pay Attention To

Setup delay: in-
puts to registers.

Operation delay:
register to regis-
ter.

Output delay: gen-
eration of the ready
signal.
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Sequential Shifter Design
Streamlining and Optimization
Streamline hardware illustration to make it readable.

Include optimizations we hope synthesis program will make.

Optimization Opportunities
Use an enable for registers.
Shifter is just a bit renaming plus one zero.

The three operations on cnt, ¢ > 0, c — 1, and ¢ ==
... can all be done by the same logic.



Sequential Shifter Design

shift_It_seq
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Sequential Shifter Design

Sequential Shifter with Multiple Shifters

For example: Shift x by 9 bits.

shift_It seq_d num_shifters=2
Use a sequential shifter with 4-bit and 1-bit shifters.
sfl sf4
Shift by 4-bits twice and by 1-bit once. Shit_fixed) | shift_fixed
gmt=1 gmt=4
2 2 o 9
L |2 shifted | {2 shifted & £
Features & g —l—P < <
shift shift =
. | B J
The cnt register divided into multiple segments. unshifte A
]
Fixed shifter may or may not shift. 1
\l 1=
amt 4'dl -
& y pdcnt
H
ol O J
#d1 z
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Sequential Shifter Design
Performance Analysis and Design Optimization

Goal: Choose the best shifter for some larger design.

Remainder of multiple-shifter design covered in class.
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