
LSU EE 4755 Homework 6 Due: 22 November 2021

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2021/hw06.v.html.

Problem 0: If necessary, follow the instructions at https://www.ece.lsu.edu/koppel/v/proc.html
to set up your class account, copy the assignment, and run the Verilog simulator and synthesis pro-
gram on the unmodified homework file, hw06.v. Do this early enough so that minor problems (e.g.,
password doesn’t work) are minor problems.

Teamwork
Students can work on this assignment in teams. Each student should submit his or her own
assignment but list team members. It is recommended that one team member be responsible for
learning SimVision.

Every member of a team that has completed a project, must be capable of re-solving the
problem. It is recommended that all team members re-solve the problem on their own for their
own pedagogical benefit.

Problem 1: Complete module multi_step_pipe so that it is a pipelined version of the
multi_step_functional or multi_step_seq modules. All of modules are in hw06.v. (This is
based on 2020 Solve-Home Final Exam Problem 2.)

The module must accept a new set of v0 and v1 values each clock cycle and produce a new
result each clock cycle. In the module set nstages to the number of stages in your module, so that
the value of output result is based on the inputs that appeared nstages clock cycles ago.

Instantiate as many Chipware floating-point multiplication and addition modules as needed.
(Do not use procedural code for the arithmetic.) The critical path should pass through at most
one floating-point module.

Also, set the ready output at the correct time. Output ready should be set to the value that
start has nstages ago.

The testbench will show a trace for about the first three computations (inputs in which start

was 1), and will show a trace for the ten cycles preceding each error, up to seven errors. A tally of
errors will be shown at the end. Here is a sample of the testbench for a working module:
MS Pipe Cyc 20 In: 0.0, 0.0 -> 0.0 Rdy 0 , Res: 0.0

MS Pipe Cyc 21 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 22 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 23 start=0 Rdy 1 , Res: 0.0 Good

MS Pipe Cyc 24 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 25 In: 1.0, 0.0 -> 1.0 Rdy 0 , Res: 0.0

MS Pipe Cyc 26 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 27 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 28 In: 0.0, 1.0 -> 1.0 Rdy 1 , Res: 1.0 Good

MS Pipe Cyc 29 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 30 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 31 start=0 Rdy 1 , Res: 1.0 Good

For MS Pipe ran 400 tests: Errors: 0 wrong val, 0 bad timing

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2021/hw06.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2020/fe.pdf


On a cycle in which input start is 1 the trace line will show the word In: followed by the
values of v0 and v1, and to the right of -> the correct result (which should appear nstages cycles
later). The text to the right of Rdy shows the value of the ready output. If the value is incorrect
it is followed by an x, for example, Rdy 1x,.

The text to the right of Res: shows the value on the module result output. That is followed
by text commenting on the result. A comment will be shown if Rdy is 1 or if an output is expected.
Good indicates a correct value at the correct time. XX: Need Rdy indicates that the correct value
appears at the correct time, but the ready output isn’t 1. XX: Wrong indicates the wrong value at
the time when an output was expected. XX: Early indicates the correct value arriving too early.
XX: Unexpected indicates the wrong value at a time when no value at all is expected.

Below are excerpts from the testbench output on the unmodified module.
MS Pipe Cyc 20 In: 0.0, 0.0 -> 0.0 Rdy 0X, Res: 0.0 XX: Need Rdy

MS Pipe Cyc 21 start=0 Rdy 1X, Res: 0.0 XX: Early

MS Pipe Cyc 22 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 23 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 24 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 25 In: 1.0, 0.0 -> 1.0 Rdy 0X, Res: 0.0 XX: Wrong

MS Pipe Cyc 26 start=0 Rdy 1X, Res: 1.0 XX: Unexpected

MS Pipe Cyc 27 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 28 In: 0.0, 1.0 -> 1.0 Rdy 0X, Res: 0.0 XX: Wrong

MS Pipe Cyc 29 start=0 Rdy 1X, Res: 0.0 XX: Early

MS Pipe Cyc 30 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 31 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 32 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 33 In: 1.0, 1.0 -> 3.0 Rdy 0X, Res: 0.0 XX: Wrong

MS Pipe Cyc 34 start=0 Rdy 1X, Res: 1.0 XX: Unexpected

MS Pipe Cyc 35 In: -8.6, 5.0 -> 55.9 Rdy 0X, Res: 0.0 XX: Wrong

MS Pipe test 4: Inputs at cyc 35, result expected at cyc 35. Wrong val: h’00000022

0.0000 != 55.8659 (correct)

MS Pipe Cyc 36 In: 0.4, 3.9 -> 16.7 Rdy 1 , Res: -8.6 XX: Wrong

MS Pipe test 5: Inputs at cyc 36, result expected at cyc 36. Wrong val: h’c109657e

-8.5873 != 16.7235 (correct)

The following is the testbench output on a module in which nstages is set too low by 1, and
in which v00 is used where v01 should be:
MS Pipe Cyc 20 In: 0.0, 0.0 -> 0.0 Rdy 0 , Res: 0.0

MS Pipe Cyc 21 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 22 start=0 Rdy 0X, Res: 0.0 XX: Need Rdy

MS Pipe Cyc 23 start=0 Rdy 1X, Res: 0.0 XX: Early

MS Pipe Cyc 24 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 25 In: 1.0, 0.0 -> 1.0 Rdy 0 , Res: 0.0

MS Pipe Cyc 26 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 27 start=0 Rdy 0X, Res: 0.0 XX: Wrong

MS Pipe Cyc 28 In: 0.0, 1.0 -> 1.0 Rdy 1X, Res: 2.0 XX: Unexpected

MS Pipe Cyc 29 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 30 start=0 Rdy 0X, Res: 0.0 XX: Wrong

MS Pipe test 2: Inputs at cyc 28, result expected at cyc 30. Wrong val: h’00000000

0.0000 != 1.0000 (correct)

MS Pipe Cyc 31 start=0 Rdy 1X, Res: 1.0 XX: Unexpected

2



MS Pipe Cyc 32 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 33 In: 1.0, 1.0 -> 3.0 Rdy 0 , Res: 0.0

MS Pipe Cyc 34 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 35 In: -8.6, 5.0 -> 55.9 Rdy 0X, Res: 0.0 XX: Wrong

MS Pipe Cyc 36 In: 0.4, 3.9 -> 16.7 Rdy 1X, Res: 3.0 XX: Unexpected

MS Pipe Cyc 37 In: -9.5, -4.5 -> 152.0 Rdy 0X, Res: 0.0 XX: Wrong

Make sure that your modules are synthesizable.
The smart way to solve the problem is to base the design on ms_functional. Remember that

the control logic in multi_step_seq, such as logic related to step, is not needed in a pipelined
implementation. The solution should be relatively short and uncomplicated. For example, no
conditionals are needed.

A good way to start is to compute everything in one stage, and when that’s correct break the
logic into stages so that the critical path passes through at most one floating-point module.

3


	Problem 0
	Problem 1

