
LSU EE 4755 Homework 3 Solution Due: 18 October 2021

To help solve the problems below, look at problems listed in the simple model slides, 2020 Homework
4, 2019 Midterm Exam Problem 2b and c, and especially 2018 Final Exam problems 1 and 2.

Problem 1: As requested in the subproblems below use the simple model to determine the cost
and delay of the insert_at module from the solution to Homework 1 (see last page) instantiated
with wa = wa and wb = wb, and using Clsb(wa) for the cost of the mask_lsb module and Dlsb(wa)
for the delay of the mask_lsb module. The wo and walg parameters are not set so you can use
their default values, wo = wa + wb, la = dlg(wa + 1)e, and lb = dlgwbe, in your answers.

For partial credit, and to help you solve the problems provide a sketch of the inferred hardware.
It may help to first solve the problem for specific values of wa and wb, and then to generalize for
arbitrary wa and wb.

(a) Find the cost and delay of the hardware inferred for the line of Verilog from insert_at shown
below. Just for the hardware described on the line. There’s no trick, this part is easy. Just
remember to express your answers in terms of wa, wb, and wo.

assign o = ia_high | ib_at_pos | ia_low;

Suppose for a moment that each of the quantities being ORd, ia high, ib at pos, and ia low, are wo bits.

Then for each of the wo bit positions in o there will be a 3-input OR gate (or possibly two 2-input OR gates) and the

total cost would be 2wo uc. But while ia high and ib at pos are wo bits, ia low is only wa bits. So the cost of

the hardware computing the low wa bits of o will be 2wa uc. Each of the remaining wo − wa = wb bits will just be

an OR of a bit of ia high with a bit of ib at pos, for a cost of wb uc. So the total cost will be [2wa + wb] uc

or equivalently [wo + wa] uc .

The low wa bits are computed using either two 2-input OR gates or a 3-input OR gate, either way the delay is 2 ut .

Note that the delay should be based on the critical path, and in this case it is one of the low wa bits. I suppose it’s nice

that those other bits are computed in just 1 ut but the important number is when all bits are done.

Grading Note: Many gave the delay as dlg 3e ut. Normally I don’t expect numbers to be computed for arithmetic

expressions, but that’s for complex ones. In this case, please just give the answer as 2, lest I assume you don’t know what

dlg 3e ut means.

Common Mistake: A common mistake was to OR together all 2wo + wa bits in one big OR gate, or perhaps

two large OR gates. That’s wrong because that’s not what a bitwise OR does.

(b) Find the cost and delay of the shift_left module instances slc and slb taking into account any
constant inputs and assuming that the synthesis program infers a logarithmic shifter. Don’t forget
that your answer must be in terms of wa, wb, wo, la, and lb, and that these denote the parameters
of insert_at, not the parameters of the shifters. For more information on the logarithmic shifter
see the additional material provided for the Set 1 lectures on the course lectures page.

Before cutting-and-pasting simple-model cost and delay expressions for a logarithmic shifter,
take a close look at the parameters set for slc and slb and be sure to optimize for them. Notice
that unlike typical shifters, the shift-out and shift-in ports are not the same size and that the shift
amount is not necessarily ceiling-log-two of the input width.

Hint: The cost and delay for one of these shifters will be really easy to compute.
Notice that the shift amount connection (amt) to slc is an elaboration-time constant, wb. Therefore, the cost of

slc is zero. A bit in the output ia high is either connected to a bit of input ia high low or to the constant zero.

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/ln.html

Grading Note: Most people did not see that the shifter required no hardware at all (other than something to

generate a constant zero which would be optimized away). A few that did notice that the shift amount was zero did not

properly optimize the multiplexors to which the shift amount is connected. If one of the data inputs of a mux is constant

the cost drops from 3 uc to 1 uc per bits. But if the select input is constant the cost goes to zero. If that’s not obvious

please review what a mux does.

Next, consider slb, in which none of inputs are constant. The width of the input is wb, the width of the output is

wo, and the input can be shifted by at most 2dlg(wa+1)e bits. Let la = dlg(wa + 1)e, that’s the number of bits used

to represent the shift amount. The value of the shift amount is at most 2la − 1.

A logarithmic shifter with an la-bit shift amount consists of la multiplexors, one multiplexor for each bit in the shift

amount. Multiplexor 0 shifts by either 0 or 20 = 1 bit, mux 1 shifts by either 1 or 21 = 2 bits, mux i shifts by either 0

or 2i bits, and mux la − 1 shifts by 0 or 2la−1 bits. In a conventional logarithmic shifter with la = 4, the input and

output would each be 24 = 16 bits, and as a whole the shifter could shift by an amount ranging from 0 bits to 15 bits

(but not by 16 bits). (Why not 16 bits? That’s a convention, but why not allow a shift amount that would shift away all

of the bits. Good question, I’m sure it was debated.)

Lets consider the shifter needed for slb. Let the first multiplexor making up this shifter shift by 0 or 1 bits. In

a conventional shifter the mux has two w-bit inputs and a w-bit output. But in slb the output will be larger than the

input, wo bits. So we need to make the mux large enough to handle the largest value produced at that stage. For the

first stage, since it can shift by one bit, we need to make the mux wb + 1 bits (remembering that input is wb bits). The

second mux can shift by 0 or 2 bits, and to it needs to be wb + 1 + 2 = wb + 3 bits. Because the output is wo bits the

maximum mux size is wo bits, which will be the last mux. That last mux can shift by 0 or 2la−1 bits. (Because wa and

wb are not constrained, it is not always true that 2la−1 = wa/2.) The diagram below shows such a shifter in which wi

would be used for wb and wamt would be used for la.

1'b0

Shift by 0 or 1

m
sb

lsb

amt

i o

shift_left_log (wi, wo, wamt)

amt[0] amt[1] amt[2] amt[wamt-1]

Shift by 0 or 2 Shift by 0 or 4

wi

wamt

wo

min(wo,wi+1)

1'b0

lsb
m
sb 2'b0

m
sb

lsb2'b0

lsb
m
sb

min(wo,wi+3)

4'b0

m
sb

lsb4'b0

lsb
m
sb

min(wo,wi+7)

2wamt-1'b0

m
sb

lsb
lsb

m
sb

2wamt-1'b0

Drawn for wo=2wamt

A general w-bit 2-input mux has cost 3w uc. But in a shifter some mux input bits are zero, and at those positions

the cost is 1 ut each. First lets assume that all bits have cost w ut. Also, lets restrict ourselves to the case where

wo = wb + 2la−1.

The cost under that assumption and restriction is

Csl−noopt(wb, wo, la) =

la−1∑
i=0

3

wb +

i∑
j=0

2j

 uc

=

la−1∑
i=0

3(wb + 2i+1 − 1) uc

=

[
3(wb − 1)la +

3

2
(2la − 1)

]
uc

2

For a tighter cost estimate, consider the number of zero bits in stage i. Stage i shifts by 2i bits and so 2i zeros

must be appended to the most-significant side of the unshifted input and 2i zeros are appended to the least-significant

side of the shifted input. So there are 2× 2i mux bits with a zero at either input, and so the cost is

[3(wb + 2i+1− 1)− 2× 2× 2i] uc or [3(wb + 2i+1− 1)− 2× 2i+1] uc or [3(wb− 1) + (3− 2)2i+1] uc

or [3(wb − 1) + 2i+1] uc.

The total cost is

Csl−opt(wb, wo, la) =

la−1∑
i=0

[3(wb − 1) + 2i+1] uc

= [3(wb − 1)la +
1

2
(2la − 1)] uc

Grading Note: No one computed the cost completely correctly. A small deduction, 0.5, was given for a cost of

wola uc since that overstates the cost of all but the last mux. A much larger deduction was given if the cost was based

on muxen that were too small.

The delay is far less tedious to compute because regardless of the size of each multiplexor, the critical path through

a mux passes through two 2-input gates. Under the simple model their delay is 2 ut, and so the total delay is 2la ut.

That’s it.

(c) Find the cost and delay of insert_at. Use the answers above and work out cost and delay for
the remaining hardware in the module. Don’t forget to use Clsb(wa) for the cost of the mask_lsb

module and Dlsb(wa) for the delay of the mask_lsb module.
For this discussion refer to the insert at module below which includes labels such as Line 1 in the comments.

In the sub-problems above the cost and delay of hardware described by Lines 7, 5, and 6 has been found. The cost and

delay of the ml instance, Line 1, are given in this problem as Clsb(wa) and Dlsb(wa). The Verilog on Line 4 is executed

at elaboration time and so does not describe hardware. All that remains to work out is the hardware described on Lines

2 and 3.

Each of these lines is a bitwise AND of two wa-bit quantities, for a cost of wa uc each. Their delay is 1 ut.

Combining all of these yields the total cost,

Cinsertat(wa, wb) =
[ml – L1︷ ︸︸ ︷
Clsb(wa) +

L2-3︷︸︸︷
2wa +

L5︷︸︸︷
0 +

slb – L6︷ ︸︸ ︷
3(wb − 1)la +

1

2
(2la − 1) +

o – L7︷ ︸︸ ︷
2wa + wb

]
uc

Collecting terms and using Clsb from the problem below:

Cinsertat(wa, wb) =

[
Clsb(wa) + 2wa + 0 + 3(wb − 1)la +

1

2
(2la − 1) + 2wa + wb

]
uc

= [wa + 2la − 4 + 2wa + 0 + 3(wb − 1)la +
1

2
(2la − 1) + 2wa + wb] uc

= [wa + wa − 4 + 2wa + 0 + 3(wb − 1)la +
1

2
(wa − 1) + 2wa + wb] uc

= [6.5wa − 4.5 + 3(wb − 1)la + wb] uc

= [3(wb − 1)la + wb + 6.5wa − 4.5] uc

The dominant term is 3wbla, which isn’t so bad.

3

// SOLUTION -- Line numbers are referenced in the solution discussion.

module insert_at #(int wa = 20, wb = 10, wo = wa+wb, walg = $clog2(wa+1))

(output logic [wo-1:0] o,

input uwire [wa-1:0] ia, input uwire [wb-1:0] ib,

input uwire [walg-1:0] pos);

uwire [wa-1:0] mask_low;

mask_lsb #(wa) ml(mask_low, pos); // Line 1.

uwire [wa-1:0] ia_low = ia & mask_low; // Line 2.

uwire [wa-1:0] ia_high_low = ia & ~mask_low; // Line 3.

localparam int wblg = $clog2(wb); // Line 4. No Hardware. (Computed during elaboration.)

uwire [wo-1:0] ia_high;

shift_left #(wa,wo,wblg) slc(ia_high, ia_high_low, wblg’(wb)); // Line 5

uwire [wo-1:0] ib_at_pos;

shift_left #(wb,wo,walg) slb(ib_at_pos, ib, pos); // Line 6

assign o = ia_high | ib_at_pos | ia_low; // Line 7

endmodule

To find the total delay we need to find the critical path. Note: Emphasis added after grading. The

critical path is easy to find because the parts taking a substantial amount of time, ml (the mask lsb instance) and slb,

connect only to insert at module inputs. The default assumption for timing analysis is that module inputs arrive at

t = 0, and so the output of ml is available at Dlsb(w) and the output of slb is available at 2la ut. Peeking ahead to

the solution of the next problem, we know that ml has a delay of la ut.

The output of both ml and slb each connect only to the o expression, Line 7, and so the critical path is from slb

to Line 7. That would add a delay of 1 (if connected intelligently), and so the delay is Dinsertat(wa, wb) = [2la+1] ut,

where la = dlg(wa + 1)e.

Problem 2: Some of you may have seen this coming: Find expressions for Clsb(w), the cost of the
mask_lsb module and Dlsb(w), the delay of the mask_lsb module, in both cases wo = w, where wo

is the parameter used in the mask_lsb definition. Assume a well-optimized design, not something
that uses w dlgwe-bit magnitude comparison units.

Hint: Think about the problem for about 30 minutes, then look at 2018 Final Exam Problems
1 and 2.

The gtd rec module from the 2018 final exam is similar to mask lsb but has three differences. In mask lsb

the input value, n1, specifies that there should be n1 ones followed by zeros. In gtd the input value, iter, specifies that

there should be iter+1 zeros followed by ones. The second difference (or a consequence of the first) is that while the

output of mask lsb can be all zeros or all ones, the output of gtd rec must have at least one zero. Finally, gtd rec

can only be instantiated at power-of-two sizes.

Those minor differences are easy to fix. For example, inverting the output (change each zero to a one) will fix the

first difference. The non-power-of-two issue can be fixed by making sure that the size of the recursive instantiation is

always a power of two. The initial instantiation does not have to be a power of two. Also a special case can be added to

the initial instantiation to handle the all ones case.

I’m tempted to show the recursive version of mask lsb, but I might make it a midterm exam problem. (Not the

whole thing, just a small part.) If I do I’ll provide a warning in class on Monday, 25 October 2021.

4

For cost, the easiest thing to do is assume that w is a power of 2 and then just use the expressions from the exam.

Using this assumption: Clsb(w) = [2w − 4] uc. For arbitrary positive w the cost of the initial instantiation is w uc

and the cost of the recursive instantiation (one level down) is 2dlgwe−1 uc. The terminal case for recursion is for w = 2,

and the cost of that hardware is zero under the simple model. So the summation will end at w = 4 (which is i = 2 in

the summation). The total cost is

Clsb(w) = [w +

2∑
i=lw−1

2i] uc

= [w + 2lw − 4] uc

where lw = dlgwe.
Each level has a delay of 1, and so the total delay is [dlgwe − 1] ut for w ≥ 4.

5

An uncommented Homework 1 solution appears below.
For the full version visit https://www.ece.lsu.edu/koppel/v/2021/hw01-sol.v.html.

module insert_at
#(int wa = 20, wb = 10, wo = wa+wb, walg = $clog2(wa+1))

(output logic [wo-1:0] o,

input uwire [wa-1:0] ia,

input uwire [wb-1:0] ib,

input uwire [walg-1:0] pos);

uwire [wa-1:0] mask_low;

mask_lsb #(wa) ml(mask_low, pos);

uwire [wa-1:0] ia_low = ia & mask_low;

uwire [wa-1:0] ia_high_low = ia & ~mask_low;

localparam int wblg = $clog2(wb);

uwire [wo-1:0] ia_high;

shift_left #(wa,wo,wblg) slc(ia_high, ia_high_low, wblg’(wb));

uwire [wo-1:0] ib_at_pos;

shift_left #(wb,wo,walg) slb(ib_at_pos, ib, pos);

assign o = ia_high | ib_at_pos | ia_low;

endmodule

module shift_left
#(int wi = 4, wo = wi, wolg = $clog2(wo))

(output uwire [wo-1:0] o,

input uwire [wi-1:0] i,

input uwire [wolg-1:0] amt);

assign o = i << amt;

endmodule

module mask_lsb
#(int wo = 6, wp = $clog2(wo+1))

(output logic [wo-1:0] o, input uwire [wp-1:0] n1);

always_comb for (int i=0; i<wo; i++) o[i] = i < n1;

endmodule

6

https://www.ece.lsu.edu/koppel/v/2021/hw01-sol.v.html

	Problem 1
	Part char 97
	Part char 98
	Part char 99

	Problem 2

