LSU EE 4755 Homework 3 soution ~ Due: 18 October 2021

To help solve the problems below, look at problems listed in the simple model slides, 2020 Homework
4, 2019 Midterm Exam Problem 2b and c, and especially 2018 Final Exam problems 1 and 2.

Problem 1: As requested in the subproblems below use the simple model to determine the cost
and delay of the insert_at module from the solution to Homework 1 (see last page) instantiated
with wa = w, and wb = wy,, and using Cig,(w,) for the cost of the mask_1sb module and Dig,(wy,)
for the delay of the mask_1sb module. The wo and walg parameters are not set so you can use
their default values, w, = wq + wy, I, = [lg(w, + 1)], and I, = [lgwy], in your answers.

For partial credit, and to help you solve the problems provide a sketch of the inferred hardware.
It may help to first solve the problem for specific values of w, and wy, and then to generalize for
arbitrary w, and wy.

(a) Find the cost and delay of the hardware inferred for the line of Verilog from insert_at shown
below. Just for the hardware described on the line. There’s no trick, this part is easy. Just
remember to express your answers in terms of w,, wp, and w,.

assign o = ia_high | ib_at_pos | ia_low;

SUPPOSQ for & moment that each of the (\UQI\UUQS bemg ORd, ia_high, ib_at_pos, and ia_low, are w, DITs.
Then for each of the w, DIL POSITIONS N o there ill be a 3-Input OR gate (or Possibly two 2-Input OR gates) and the
total cost would be 2w, u.. But while ia_high and ib_at_pos are w, Dits, ia_low is ONly w, DILS. SO the cost of
the hardware computing the 10w w, bits of o Will be 2w, uc. Each of the remaining w, — w, = wp HILs Will just be

an OR 0f 2 bit of ia_high with 4 bit of ib_at_pos, T0r 4 oSt Of wy, Ue. SO the total cost Will be | [2w, + wp] ue

or equnatenny [, + w,]

The low wy, Dits are computed using either two 2-input OR gates or 4 3-Input OR gate, either way] the delay is 2 uy \
Note that the delay should be based on the critical path, and in this case it is one of the 10w w, Dts. T Suppose it's nice
that those other bits are computed in just 1wy but the important number is when all bits are done.

Grading Note: Many gave the delay as [1g 37 ug. Normally 1 don't expect numbers to be computed for arithmetic
expressions, but that's for complex ones. In this case, please just give the answer as 2, lest | assume you don't know what
[lg 3] ug means.

Common Mistake: A common mistake was to OR together all 2w, + w, bits in one big OR gate, or perhaps
two large OR gates. That's wrong because that's not what a bitwise OR does.

(b) Find the cost and delay of the shift_left module instances slc and s1b taking into account any
constant inputs and assuming that the synthesis program infers a logarithmic shifter. Don’t forget
that your answer must be in terms of wq, wy, w,, l,, and Iy, and that these denote the parameters
of insert_at, not the parameters of the shifters. For more information on the logarithmic shifter
see the additional material provided for the Set 1 lectures on the course lectures page.

Before cutting-and-pasting simple-model cost and delay expressions for a logarithmic shifter,
take a close look at the parameters set for slc and slb and be sure to optimize for them. Notice
that unlike typical shifters, the shift-out and shift-in ports are not the same size and that the shift
amount is not necessarily ceiling-log-two of the input width.

Hint: The cost and delay for one of these shifters will be really easy to compuite.

Notice that the shift amount connection (amt) 10 slc is an elaboration-time constant, wb. Therefore, the cost of
slc is zero. A bit in the OUIpUI ia_highlis aither connected £o a bit of '\T\PUI ia_high low 0Or 10 The constant zero.

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/ln.html

Grading Note: Most pQOP\Q did not see that the shifter required no hardware at all (OU\QY than something to
generate a constant zero whieh would be optimized Q\N&y). A few that did notice that the shift amount was zero did not
properly optimize the multiplexors 1o which the shift amount is connected. It one of the dafa INPuts of & MUX is CONSTant
the cost drops from Jue 1o 1ug par bits. But if the select input is constant the cost goes 1o zero. If that's not obvious
please review what a mux does.

Next, consider s1b, in which none of inputs are constant. The width of the input is wy, the Width of the output is
W, ANA The INpUT can be shifted by at most 218(wa+11 pits. Let I, = [lg(w, + 1)], That's the number of bits used
to represent the shift amount. The value of the shift amount is at most 2'« — 1.

A logarithmic shifter With an Z,-bit shift amount consists of Z, multiplexors, one multiplexor for each bit in the shift
amount. Multiplexor 0 shifts by either 0 or 29 = 1 bit, mux 1 Sifts by either 1 or 21 = 2 bits, mux 4 shifts by either 0
or 27 bits, and mux [, — 1 shifts by 0 or 2f==1 pits. In & conventional logarithmic shifter with 7, = 4, the input and
output would each be 24 = 16 bits, and as a whole the shifter could shift by an amount ranging from 0 bits to 15 bits
(DUt not by 16 bIts). (Why not 16 bits? That's a convention, but why not allow a shift amount that would shift away all
of the bits. Good question, I'm sure 1t was debated.)

Lets consider the snifter needed for s1b. Let the first multiplexor making up this shifter shift by 0 or 1 bits. In
a conventional shifter the mux nas two w-bit inputs and & w-bit output. But in s1b the output will be larger than the
INpUL, w, DItS. SO We need to make the mux large enough to handle the largest value produced at that stage. For the
first stage, since 1t ean shift by one bit, we need to make the mux wj + 1 bits (remembering that Input is wp bits). The
second mux can Shift by 0 or 2 bits, and 10 it needs to be wp, + 1 + 2 = wj, + 3 bits. Because the output is w, bits the
MAXIMUM MUX $iZ¢ 1§ w,, HIts, Whieh ill be the 1ast mux. That last mux can shift by 0 or 2= 1 bits. (Because w, and
wy, aTe Not constrained, it 1s not always true that 2k« 1 = w, /2.) The diagram below shows such & shifter in which wi
would be used for wy and wamt would be used for /,,.

amt shift_left_log (wi, wo, wamt) Drawn for wo=2"2mt
[mm|
T 7
wamt amt[0] °ec gmt[wamt-1]
1'b0 3 2'b0 4'b0 2wamtlipn
i g min(wo,wi+1) min(wo,wi+3) min(wo,wi+7)
el -
1'b0 2 7 7 2wamt-1ip(
Shift by 0 or1 Shift by 0 or 2 Shift by 0 or 4

A g@n@m\ w-HIt 2—'mput MUX Nas cost 3w u.. But in & shiffer some mux 'mput DITS are zero, and at those pOS\UOHS
the cost is 1 ug each. First lets assume that all bits have cost w uy. A\SO, lots restrict ourselves o the case where
W, = wy + 21

The cost under that assumpt'\on and restriction is

lo—1 %

Csl—noopt (wba Wo, la) = Z 3 wy + Z 2j Uc
1=0 j=0

lo—1

=3 3wy, +2 — D,
1=0

= [3(wb — 1), + g(zla — 1)] U

2

For a tighter cost estimate, consider the number of zero bits in stage 7. Stage 4 SNifts by 2° bits and so 2¢ zeros
must be app@nd@d 10 the most—s'\gnmegnt side of the unshitted 'mput and 2 zeros are app@nded 10 the \QQSI—S'\gmﬂQQnt
side of the shifted 'mput. S0 thare are 2 x 2¢ mux bits with a zero at either mput, and 8o the cost is

[B(wp + 21 —1) =2 x 2 x 2] ue or [3(wy + 21 — 1) — 2 x 26F . or [3(wp — 1) + (3 —2)20H] u,
or [B(wp — 1) + 27 ue.

The total cost is

lo—1
OSl*Opt(wbv Wo, la) = Z [B(wb — 1) + 2i+1] Ue
=0
1 l
= [Blwy — Dla + 5 (2" = 1)] uc

2

Grading Note: No one computed the cost completely correctly. A small deduetion, 0.5, was given for & ¢ost of
Wylg U SINCE That Overstates the cost of all but the 1ast mux. A mueh larger deduction was given it the cost was based
On muxen that were 100 small.

The delay is Tar less tedious to compute because regardiess of the size of each multiplexor, the eritical path through
2 MUX Passes through two 2-input gates. Under the simple model their delay 1S 2 ug, and so the total delay 18 21, uy.
That's it.

(¢) Find the cost and delay of insert_at. Use the answers above and work out cost and delay for
the remaining hardware in the module. Don’t forget to use Cis,(w,) for the cost of the mask_1sb
module and Digp(w,) for the delay of the mask_1sb module.

For this discussion refer to the insert_at module below which includes 1abels such as Line 1 in the comments.
In the SUD-PYOD\QmS apove the cost and GQ\Q\/ of hardware deseribed b\/ Lines 7, 5, and 6 has been found. The cost and
delay of the m1 instance, Line 1, are given in this problem as Clgp (wg,) and Digy (w,). The Verilog on Line 4 is executed
af elaboration time and so does not deseribe hardware. All that remains to work out is the hardware deseribed on Lines
2 and 3.

Each of these lines is a bitwise AND 0T tTWO wg-DIt QU‘AT\UUQS, for a cost of w, ue @ach. Their GQ\&y is 1uy.
Combm‘mg all of these y\Q\GS the total cost,

ml - L1 L2-3 L5 slb — L6 o— L7
—— AN —

1
Cinsertat(waa wb) = [Clsb(wa) + 2w, + 0 +3(wb - 1)la + 5(2la - 1) + 2wq + wb] Uc

Collecting terms and using Clgp, Trom the problem below:

1
Cinsertat(waa wb) = Clsb(wa) + 2wg + 0+ 3(wb - 1)la + 5(2la - 1) + 2wq + wp | Uc
1
= [wg + 2! — 44 2w, + 0+ 3(wp — 1)l, + 5(2“ — 1) + 2wg + wy) ue

1
:[wa+wa—4+2wa+0+3(wb—1)la+§(wa—1)+2wa+wb]uc

= [6.5w, — 4.5 + 3(wp — 1)l + wp) ue
= [3(wp — 1)y + wp + 6.5w, — 4.5 ue

The dominant term is 3wpl,, Which isn't so bad.

// SOLUTION -- Line numbers are referenced in the solution discussion.
module insert_at #(int wa = 20, wb = 10, wo = watwb, walg = $clog2(wa+l))
(output logic [wo-1:0] o,
input uwire [wa-1:0] ia, input uwire [wb-1:0] ib,
input uwire [walg-1:0] pos);

uwire [wa-1:0] mask_low;

mask_lsb #(wa) ml(mask_low, pos); // Line 1.
uwire [wa-1:0] ia_low = ia & mask_low; // Line 2.
uwire [wa-1:0] ia_high low = ia & “mask_low; // Line 3.

localparam int wblg = $clog2(wb); // Line 4. No Hardware. (Computed during elaboration.)
uwire [wo-1:0] ia_high;

shift_left #(wa,wo,wblg) slc(ia_high, ia_high low, wblg’(wb)); // Line 5

uwire [wo-1:0] ib_at_pos;

shift_left #(wb,wo,walg) slb(ib_at_pos, ib, pos); // Line 6
assign o = ia_high | ib_at_pos | ia_low; // Line 7
endmodule

To find the total delay we need to find the critical path. Note: Emphasis added after grading. The
eritical path is easy to find because the parts taking a substantial amount of time, m1 (the mask_1sb instance) and s1b,
connect only 10 insert_at module inputs. The default assumption for timing analysis is that module inputs arrive at
¢t = 0, and so the output of m1 i available at Digp,(w) and the output of s1b is available at 2/, ug. Peeking anead to
the solution of the next problem, we know that m1 has & delay of [, uy.

The output of both m1 and s1b each connect only to the o expression, Line 7, and so the critical path is from s1b
10 Line 7. That would add a delay of 1 (if connected intelligently), and o the delay 18 Dinsertat (Wa, wy) = [21 +1] ug,
where I, = [lg(w, +1)].

Problem 2: Some of you may have seen this coming: Find expressions for Cig,(w), the cost of the
mask_1sb module and Dy, (w), the delay of the mask_1sb module, in both cases wo = w, where wo
is the parameter used in the mask_1sb definition. Assume a well-optimized design, not something
that uses w [lgw]-bit magnitude comparison units.

Hint: Think about the problem for about 30 minutes, then look at 2018 Final Exam Problems
1 and 2.

The gtd_rec module from the 2018 final exam is similar 1o mask_1sb but nas three differences. In mask_1sb
the 'mput value, ni, SPQQ'\T\QS that there should be n1 ones followed Dy 70r08. In gtd the '\nput value, iter, SPQQmQS that
there should be iter+1 zeros followed b\j ones. The second ditference (OT a conseduence of the ﬂYSI) 18 that while the
OUIPUI 0f mask_1sb can be all zeros or all ones, the OUIpUt of gtd,rec mMust have at 1east one zero. F'ms;\\y, gtd,rec
can on\y De instantiated at pO\NQY—OT-IWO S1Z68.

Those minor differences are Qasy 1o fx. For examp\@, '\n\/ertmg the OUT,PUt (Qhang@. each zero 1o o OHQ) Wwill Tix the
first difterence. The ﬂOﬂ-pOWQY—OT-lWO issue can be fixed b\j mak'mg sure that the size of the recursive instantiation is
&\\NQyS a power of Two. The initial instantiation does not have To be & power of two. Also & SPQQ'\Q\ case can be added 1o
the initial instantiation to handle the all ones case.

I'm t@mpted 10 show the recursive version of mask_1sb, but | m'\gm make it a midterm exam prob\@m. (N()t the
whole thing, just a small part.) 1t 1 do I'll provide a warning in class on Monday, 25 October 2021,

4

For cost, the easiest thing 1o do is assume that w 1S & power of 2 and then Just use the expressions from the exam.
Using this assumption: Cigp(w) = [2w — 4] ue. For arbitrary positive w the cost of the initial instantiation I8 w ue
and the cost of the reeursive instantiation (one lavel down) is 2Mgwl—1y The terminal case for recursion is for w = 2,
and thae cost of that hardware is zero under the simple model. So the summation will end at w = 4 (Whieh i8 ¢ = 2 in
the summation). Tha total cost is

where [, = [lgw].
Each level has a delay of 1, and so the total delay is [[lg w] — 1] ug Tor w > 4.

An uncommented Homework 1 solution appears below.
For the full version visit https://www.ece.lsu.edu/koppel/v/2021/hw01-sol.v.html.

module insert_at
#(int wa = 20, wb = 10, wo = watwb, walg = $clog2(wa+l))
(output logic [wo-1:0] o,
input uwire [wa-1:0] ia,
input uwire [wb-1:0] ib,
input uwire [walg-1:0] pos);

uwire [wa-1:0] mask_low;

mask_lsb #(wa) ml(mask_low, pos);

uwire [wa-1:0] ia_Jlow = ia & mask_low;

uwire [wa-1:0] ia_high low = ia & “mask_low;

localparam int wblg = $clog2(wb);
uwire [wo-1:0] ia_high;
shift_left #(wa,wo,wblg) sle(ia_high, ia_high low, wblg’(wb));

uwire [wo-1:0] ib_at_pos;
shift_left #(wb,wo,walg) slb(ib_at_pos, ib, pos);

assign o = ia_high | ib_at_pos | ia_low;
endmodule

module shift_left
#(int wi = 4, wo = wi, wolg = $clog2(wo))
(output uwire [wo-1:0] o,
input uwire [wi-1:0] i,
input uwire [wolg-1:0] amt);
assign o = i << amt;
endmodule

module mask Isb
#(int wo = 6, wp = $clog2(wo+l))
(output logic [wo-1:0] o, input uwire [wp-1:0] nl);
always_comb for (int i=0; i<wo; i++) o[i] = i < ni;
endmodule

https://www.ece.lsu.edu/koppel/v/2021/hw01-sol.v.html

	Problem 1
	Part char 97
	Part char 98
	Part char 99

	Problem 2

