
LSU EE 4755 Homework 1 Solution Due: 24 September 2021

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2021/hw01.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw01.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Problem 1: The partially completed insert_at module below and in the homework assignment
file has three inputs, a wa-bit input ia, a wb-bit input ib, and a dlg(wa+1)e-bit input pos, and there
is one output, a wa+wb-bit output o. Complete the module following the coding requirements given
further below so that o consists of the bits of ia with ib inserted at pos. That is, o[pos-1:0]
should be set to ia[pos-1:0], o[wb+pos-1:pos] should be set to ib, and o[wa+wb-1:wb+pos]

should be set to ia[wa-1:pos].
For example, let wa=6 and wb=2, ia=111111, ib=00, and pos = 2. Then o=11110011. For

pos=5, o=10011111. For those still not 100% sure of what o should be set to should look at how
o_shadow is computed in the testbench module. Also, the testbench will show what the output
should be when it isn’t.

module insert_at
#(int wa = 20, wb = 10, wo = wa+wb, walg = $clog2(wa+1))

(output logic [wo-1:0] o,

input uwire [wa-1:0] ia, input uwire [wb-1:0] ib,

input uwire [walg-1:0] pos);

// The line assigning mask_low must be replaced with a mask module.

uwire [wo-1:0] mask_low = (1 << pos) - 1; // REPLACE ME!

uwire [wo-1:0] ib_at_pos;

shift_left #(wb,wo,walg) sl1(ib_at_pos, ib, pos);

assign o = ia & mask_low | ib_at_pos;

endmodule

The insert_at module must be synthesizable and must not use procedural code and must
not use shift operators. (That includes the line assigning mask_low, it must be replaced.) Instead,
rely on instantiations of the provided shift and mask modules.

The testbench will test your module and report the first few errors. For example, here is the
testbench output for the unmodified module:

Error for ia=11111111 ib=000 pos= 0 00000000000 != 11111111000 (correct)

Error for ia=11111111 ib=000 pos= 1 00000000001 != 11111110001 (correct)

Error for ia=11111111 ib=000 pos= 2 00000000011 != 11111100011 (correct)

Error for ia=11111111 ib=000 pos= 3 00000000111 != 11111000111 (correct)

Error for ia=11111111 ib=000 pos= 4 00000001111 != 11110001111 (correct)

Done with 27 tests, 15 errors found.

The text 00000001111 != 11110001111 (correct) shows the output of insert_at to the left
of the != and the correct answer to the right. So in this case 00000001111 is the module output

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2021/hw01.v.html
https://www.ece.lsu.edu/koppel/v/proc.html

and 11110001111 is what the module output should have been. Only the first few errors are shown,
but the total number of errors is reported at the end, 15 in this case.

Synthesizability can be checked by running the synthesis script using the command genus

-files syn.tcl. If the module is synthesizable (though not necessarily correct) a table of area
and delay will be shown, for example:
Module Name Area Delay Delay

Actual Target

insert_at 51832 0.987 1.000 ns

insert_at_1 97968 0.616 0.100 ns

Normal exit.

One common problem encountered by beginners is setting the correct port sizes. For example,
the shift_left module the port sizes are wi, wo, and wolg:

module insert_at #(int wa = 20, wb = 10, wo = wa+wb, walg = $clog2(wa+1))

(output logic [wo-1:0] o,

input uwire [wa-1:0] ia, input uwire [wb-1:0] ib,

input uwire [walg-1:0] pos);

uwire [wo-1:0] ib_at_pos;

shift_left #(wb,wo,walg) sl1(ib_at_pos, ib, pos);

So the first connection to a shift_left instantiation must be wi bits, the second must be wo

bits, and the third wolg bits. In the unmodified insert_at these parameters to insert_at were
set explicitly to match the connection sizes. Sometimes it may be necessary to use an intermediate
object or to cast in order to get the correct connection size. For example, if we wanted to shift by
pos+1 the following would not work:

shift_left #(wb,wo,walg) sl1(ib_at_pos, ib, pos + 1);

because the 1 in the pos+1 expression implicitly expands it to 32 bits. (This results in a warning,
but it’s not good to clutter compiler output with ignorable warnings.) The problem can be solved
using a cast:

shift_left #(wb,wo,walg) sl1(ib_at_pos, ib, walg’(pos + 1));

Solution starts on the next page.

2

The solution appears below, and can be found in the assignment directory, and on the course Web pages at

https://www.ece.lsu.edu/koppel/v/2021/hw01-sol.v.html. Immediately below is the solution without

extensive comments. On the following pages is the same solution, but with sample values shown in the comments.

module insert_at
#(int wa = 20, wb = 10, wo = wa+wb, walg = $clog2(wa+1))

(output logic [wo-1:0] o,

input uwire [wa-1:0] ia,

input uwire [wb-1:0] ib,

input uwire [walg-1:0] pos);

/// SOLUTION
uwire [wa-1:0] mask_low;

mask_lsb #(wa) ml(mask_low, pos);

uwire [wa-1:0] ia_low = ia & mask_low;

uwire [wa-1:0] ia_high_low = ia & ~mask_low;

localparam int wblg = $clog2(wb);

uwire [wo-1:0] ia_high;

shift_left #(wa,wo,wblg) slc(ia_high, ia_high_low, wblg’(wb));

uwire [wo-1:0] ib_at_pos;

shift_left #(wb,wo,walg) slb(ib_at_pos, ib, pos);

assign o = ia_high | ib_at_pos | ia_low;

endmodule

The challenge in this assignment was refreshing your knowledge of Verilog and digital logic. If you can’t follow the

module above, look at the one on the following pages and in particular use the sample values to figure out what is going

one.

The solution here makes use of a single mask unit (named ml) creating mask mask low. This mask is used twice,

in its original form to extract the lowest pos bits of ia into ia low and in inverted form to extract the high bits of

ia into ia high low. Note that both ia low and ia high_low are wa-bit quantities. The “shifter” slc writes

a shifted value of ia high low into ia high. Notice that the shift-amount input to slc (the last port) is wb, a

constant (since it’s a module parameter). That brings the cost of slc to zero.

A real shifter, slb, is used to move ib into the correct position in its output ib at pos. The assign statement

puts all of these together.

Common Mistakes: In a few solutions the shift amounts or mask sizes were set assuming that wa=8 and wb=3.

That is not correct because insert at can be instantiated with other possible values of wa and wb.

Another common mistake was to set the width of the shift amount port to a value much larger than needed. For

example, consider:

shift_left #(wb,wa+wb,wo) slb(ib_at_pos, ib, phat_pos);

The third parameter of the shift left module has been set to wo, which is overkill. (The shift amount input

has been renamed phat pos to emphasize its new size.) For this use of shift left the most by which we would shift

is ia bits, so at most the position would take dlog 2wae (or as a Verilog expression, $clog2(wa)) bits. Setting a

parameter like this to too large a value will not affect correctness (in cases like this) but it can increase the cost of the

synthesized hardware. That depends on the synthesis programs ability to recognize that high-order bits will always be

zero. So for that reason it is best to set parameters to appropriate values. That does mean taking the time to learn what

each parameter is for and to set it properly, but that is what you would be paid for.

3

https://www.ece.lsu.edu/koppel/v/2021/hw01-sol.v.html

Solution with sample values appearing in the comments:

module insert_at
#(int wa = 20, wb = 10, wo = wa+wb, walg = $clog2(wa+1))

(output logic [wo-1:0] o,

input uwire [wa-1:0] ia,

input uwire [wb-1:0] ib,

input uwire [walg-1:0] pos);

/// SOLUTION
/// :Example: Input Values:
//

// ia = aaaaaaaa (Each a is a bit of ia, it can be 0 or 1 .)

// ib = bbb (Each b is a bit of ib, it can be 0 or 1 .)

// pos = 2

//

/// Desired Output Value
//

// o = aaaaaabbbaa (Notice that ib is insert at pos 2)

uwire [wa-1:0] mask_low;

mask_lsb #(wa) ml(mask_low, pos);

uwire [wa-1:0] ia_low = ia & mask_low;

uwire [wa-1:0] ia_high_low = ia & ~mask_low;

// ia = aaaaaaaa

// mask_low = 00000011 (Two low bits are 1 because pos=2.)

// ia_low = 000000aa (ia_low has the bits to the right of pos.)

// ia_high_low = aaaaaa00 (ia_high_low: the bits to the left of pos.)

localparam int wblg = $clog2(wb);

uwire [wo-1:0] ia_high;

shift_left #(wa,wo,wblg) slc(ia_high, ia_high_low, wblg’(wb));

// ia_high_low = aaaaaa00

// ia_high = aaaaaa00000 (Shift wb bits to make room for ib.)

uwire [wo-1:0] ib_at_pos;

shift_left #(wb,wo,walg) slb(ib_at_pos, ib, pos);

// ib = bbb

// ib_at_pos = 000000bbb00 (Shifted pos bits, and widened to wo bits.)

assign o = ia_high | ib_at_pos | ia_low;

// ia_high = aaaaaa00000

// ib_at_pos = 000000bbb00

// ia_low = 000000aa

// o = aaaaaabbbaa

endmodule

4

	Problem 0
	Problem 1

