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Problem 1: [30 pts] For the modules in this problem input sample holds a new value each cycle, and
output r_avg holds the average of the last n_samples inputs. (Ignore the fact that the module needs but
lacks a reset.)

(a) For the module below show the hardware that will be inferred when instantiated with default parameters.
Be sure to optimize for the default value of n_samples.

module ravg2 #( int w = 8, n_samples = 4 )

( output logic [w-1:0] r_avg,

input uwire [w-1:0] sample, input uwire clk );

logic [w-1:0] samples[n_samples];

parameter int wm = $clog2( n_samples );

parameter int ws = w + wm;

logic [ws-1:0] tot;

always_ff @( posedge clk ) begin

samples[0] <= sample;

for ( int i=1; i<n_samples; i++ ) samples[i] <= samples[i-1];

tot <= tot - samples[n_samples-1] + samples[0];

end

always_comb r_avg = tot / n_samples;

endmodule

Solution on next page.
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� Show hardware for the module above using default parameter values.

�Optimize for these parameter values.

Solution shown below. Notice that because non-blocking assignments were used to assign samples[i], the computation of tot

uses the register outputs. In particular samples[0] is the register output, which is the value of sample from the previous cycle.

Because n samples=4 is a power of 2, the division, tot/n samples, can be done by shifting right by two bits. Since the shift

is constant just use bits 7:2 of tot and place two bits of zero in the MSB of the output.
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(b) The module to the right is similar to ravg2 except that it has three arithmetic unit instantiations: an
adder, a subtractor, and a divide-by-constant unit. Modify ravg3 so that it uses these modules. For full
credit connect them so that the critical path passes through at most one module per cycle. In a correct
solution r_avg will arrive at the output of ravg3 later than it would in module ravg2.

�Modify ravg3 so that it uses the three arithmetic units.

� For full credit, the critical path can go through at most one arithmetic unit per cycle.

�The connections to the arithmetic units can be changed (say from aa1 to something else).

�Do not add unnecessary cost or delay.

Solution appears below.

Please be sure to understand the following important points.

So that the critical path passes through at most one arithmetic module, the inputs to the arithmetic modules cannot connect to

arithmetic module outputs. Instead, they connect to registers, such as tot and samples[0].

So that the running sum is correct, the values of samples[0] and samples[n samples-1] must be used in the same cycle.

For that reason the subtractor is used to compute samples[0] - samples[n samples-1]. It would not be correct to

compute diff = tot - samples[n samples-1] in one cycle and tot = diff-samples[0] in the next cycle because

samples[0] is the wrong value.

Notice that samples[0] was directly connected to the subtractor input. That’s more convenient than using an intermediate

variable, say sa1.
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module ravg3 #( int w = 8, n_samples = 4 )

( output logic [w-1:0] r_avg,

input uwire [w-1:0] sample,

input uwire clk );

logic [w-1:0] samples[n_samples];

parameter int wm = $clog2( n_samples );

parameter int ws = w + wm;

logic [ws-1:0] tot;

// SOLUTION - Declare a register to hold output of subtractor.

logic [ws-1:0] pl_diff;

always_ff @( posedge clk ) begin

samples[0] <= sample;

for ( int i=1; i<n_samples; i++ ) samples[i] <= samples[i-1];

// tot <= tot - samples[n_samples-1] + samples[0]; // Modify or eliminate this line.

// SOLUTION - Write output of subtractor and adder into registers.

pl_diff <= diff;

tot <= sum;

end

// always_comb r_avg = tot / n_samples; // Modify or eliminate this line.

// SOLUTION - Remove unneeded declarations. (aa1, etc.)

uwire [ws-1:0] sum, diff;

// SOLUTION - Use subtract to compute samples[0] - samples[n_samples-1]

our_sub #(ws,w) sub2( diff, samples[0], samples[n_samples-1] );

// SOLUTION - Use adder to compute new value of tot.

our_adder #(ws,ws) adder1( sum, tot, pl_diff );

// SOLUTION - Use divider to compute r_avg.

our_div_by #(w,ws,n_samples) div3( r_avg, tot );

endmodule
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Problem 2: [35 pts] Appearing below is a Verilog description of a lower-cost version of the bit_keeper

module from Homework 4 and a diagram of the hardware.

typedef enum { Cmd_Reset=0, Cmd_Rot_To=1, Cmd_Write=2, Cmd_Nop=3, Cmd_SIZE } Command;

module rot_left #( int w = 10, amt = 1 )

( output uwire [w-1:0] r, input uwire [w-1:0] a);

assign r = { a[w-amt-1:0], a[w-1:w-amt] };

endmodule

module bit_keeper_lite #( int wb = 64, wi = 8, ws = $clog2(wb) )

( output logic [wb-1:0] bits, output uwire ready,

input uwire [1:0] cmd, input uwire [wi-1:0] din,

input uwire [ws-1:0] pos, input uwire clk );

localparam int ramt_a = 1; // Specify Rotation Amounts

localparam int ramt_b = 1 << ( ws >> 1 );

uwire [wb-1:0] ra, rb;

rot_left #(wb,ramt_a) rl1(ra,bits);

rot_left #(wb,ramt_b) rl8(rb,bits);

logic [ws-1:0] rot_to_do; // Remaining amount of rotation to do.

assign ready = rot_to_do == 0;

always_ff @( posedge clk ) case ( cmd )

Cmd_Reset: begin bits = 0; rot_to_do = 0; end

Cmd_Rot_To: rot_to_do = pos; // Initialize rotation. Rotate during Nop.

Cmd_Write: bits[wi-1:0] = din;

Cmd_Nop: // Continue Executing a Cmd_Rot_To

if ( rot_to_do >= ramt_b ) begin

bits = rb; // Use output of larger rot module.

rot_to_do -= ramt_b; // Decrement remaining rot amt.

end else if ( rot_to_do >= ramt_a ) begin

bits = ra; // Use output of smaller rot module.

rot_to_do -= ramt_a; // Decrement remaining rot amt.

end

endcase

endmodule

(a) Find the cost and delay of the illustrated hardware using the simple model. Take into account the
presence of constants. For the addition and comparison units assume a ripple implementation. Show any
assumptions made. (See the next part before solving this one.)

� Show cost in terms of wb, wi, and ws. �Take into account constants.

The hardware consists of registers, multiplexors, adders, comparison units, and constant shifters.

Shifters: Since they shift by a constant amount the total shifter cost is zero .

Registers: The cost of a w-bit register is 7w uc. There are two registers, bits and rot to do. There sizes are wb and ws,

so their combined cost is 7(wb + ws) uc .

Two-Input Multiplexors: The cost of a w-bit, 2-input mux is 3w uc. In the illustrated hardware there are two wb-bit 2-input

muxen and two ws-bit 2-input muxen. (None of their inputs are constant.) Their total cost is [2× 3wb + 2× 3ws] uc = 6(wb + ws) uc .

Four-Input Multiplexors: A w-bit four-input mux can be constructed from three 2-input muxen, and so its cost would is

3 × 3w uc = 9w uc. The cost of a w-bit, 2-input mux with a constant data input is w uc. Each of the four-input muxen has a

6 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e



constant data input, reducing the cost to (2 × 3 + 1)w uc = 7w uc. The total cost of the two four-input muxen accounting for

the constant input is 7(wb + ws) uc .

Adders: An ordinary w-bit ripple adder costs 9w uc. A w-bit ripple adder with one constant input costs 4w uc. The two adders

each have one constant input. Based on just that their costs are 4× 2ws uc. But the value of ramt b is 2ws/2, and so the ws/2
least-significant bits of ramt b are zero. That means the adder passes those low bits through unchanged, reducing the adder cost to

just ws/2 uc. Looking at the ramt a adder in isolation one would have to conclude that its cost is 4ws uc with ramt a=1. But the

output of the adder is ignored if rot to do>ramt b meaning that we can assume the input to the ramt a adder is no greater than

ramt b and so we only need a ws/2-bit adder. With both of those optimizations the total adder cost is 2× 4ws

2 uc = 4ws uc .

Comparison Unit: Recall that a ripple comparison unit is constructed from the carry logic of ripple subtractor. The cost of a

w-bit comparison is 4w uc. But one constant input reduces the cost to just w uc. With no further optimizations the cost of the

two comparison units is 2ws uc.

The ramt a comparison is irrelevant if rot to to is greater than ramt b, and so only ws/2 bits need be examined. If the

ramb b comparison operation were ≥ then it could just examine ws/2 bits. But since the operation is strictly greater than all bits

must be considered. But using the output of the ramt a comparison the >ramt b comparison could be done by examining ws/2

more bits. The total comparison cost is 2× ws

2 uc = ws uc .

� Show delays and arrival times on the diagram, and �highlight the critical path. These should be in terms
of wb, wi, and ws.
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The timings and critical path are shown on the di-

agram. Blue shows the delay through a component,

such as 2 for two-input multiplexors. Circled times

show the delay of the longest path starting at module

inputs and register outputs. A critical path is shown

as a red dotted line. Note that there are several criti-

cal paths in this circuit though only one is illustrated.

Multiplexor Delay: The delay of an ordinary two-

input mux is 2 ut. If one input is constant the delay

is 1 ut. The delay of an n-input mux is dlg ne2 ut,

which works out to 4 ut for a four-input mux. The

next sub-problem shows how that delay can effectively

be reduced to 2 ut on the critical path. The diagram

to the right does not reflect that optimization.

Adder Delay: The delay of a w-bit ripple adder

with a constant input is w ut. The timings in the

diagram are based on ws/2-bit adders.

Comparison Delay: The delay of a w-bit ripple comparison unit with a constant input is w ut. The timings in the diagram are

based on ws/2-bit comparison units.
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(b) In class we assume that a four-input mux is implemented using a reduction tree of 3 two-input muxen.
For the illustrated hardware that would result in a longer critical path than is necessary. Modify the diagram
on the right to show a better way of implementing the four-input multiplexors.

�Replace four-input multiplexors with two-input muxen connected to reduce critical path.

Solution appears on the lower half of the next page. The four-input mux has been replaced by three two-input muxen, but not

connected in a reduction tree. The benefit of this non-tree connection is that one of the inputs, the fourth as used here, has a delay

of only 2 ut. That is the input that carries the critical path, and so the critical path delay is reduced by 2 ut.

(c) Notice that care was taken to ensure that ramt_b is a power of 2. Explain how the fact that ramt_b is
a power of two reduces the cost of the adder and comparison unit operating on ramb_b. Also explain how a
power-of-2 ramb_b can reduce the cost of the other adder and comparison unit, if the synthesis program is
clever enough. Hint: Consider the binary representation of rot_to_do.

� Since ramt b is a power of 2 the adder and comparison unit connected to ramt b are lower cost because:

Because the lower ws/2 bits of ramt b are all zero. Because ramt b is also a constant there is no need for an adder at all for the

least significant ws/2 bits.

� Since ramt b is a power of 2 the adder and comparison unit connected to ramt a (yes, a) are lower cost
because:

Because the output of the ramt a adder is only used if rot to do <= ramt b. Therefore there is no point in providing an adder

that can handle more than ws/2 bits. For the same reason the comparison unit need only consider the lower ws/2 bits.
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Solution appears below.
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(d) Appearing below is a version of bit_keeper_lite with four ready outputs, r1, r2, r3, and r4. On the
diagram add hardware that will be synthesized for each.

module bit_keeper_lite #( int wb = 64, wi = 8, ws = $clog2(wb) )

( output logic [wb-1:0] bits, output uwire r1, output logic r2, r3, r4,

input uwire [1:0] cmd, input uwire [wi-1:0] din,

input uwire [ws-1:0] pos, input uwire clk );

localparam int ramt_a = 1;

localparam int ramt_b = 1 << ( ws >> 1 );

uwire [wb-1:0] ra, rb;

rot_left #(wb,ramt_a) rl1(ra,bits);

rot_left #(wb,ramt_b) rl8(rb,bits);

logic [ws-1:0] rot_to_do;

assign r1 = rot_to_do == 0; // [�] Show hardware for r1.

always_ff @( posedge clk ) begin

r2 = rot_to_do == 0; // [�] Show hardware for r2.

case ( cmd )

Cmd_Reset: begin bits = 0; rot_to_do = 0; end

Cmd_Rot_To: rot_to_do = pos;

Cmd_Write: bits[wi-1:0] = din;

Cmd_Nop: begin

if ( rot_to_do >= ramt_b ) begin

bits = rb;

rot_to_do -= ramt_b;

end else if ( rot_to_do >= ramt_a ) begin

bits = ra;

rot_to_do -= ramt_a;

end

r3 = rot_to_do == 0; // [�] Show hardware for r3.

end

endcase

r4 = rot_to_do == 0; // [�] Show hardware for r4.

end

endmodule

� Show hardware that will be synthesized for r1, r2, r3, and r4.

Solution appears on the next page. Because they are assigned in an always ff, the values of r2, r3, and r4 visible outside

the block come from registers. Pay close attention to where rot to do is assigned and where its value is referenced. For r1 it

is referenced outside of the always ff block and so the value is from the register. The value of rot to do used for r2 also

comes from the register output because it had not been assigned yet in the block. For r3 the value of rot to do assigned in the

cmd=Cmd Nop case is used. A mux keeps r3 unchanged when cmd is not Cmd Nop. (The value of enumeration constant Cmd Nop

is 3.) Finally, r4 is assigned at the end of the block, so it uses the value of rot to do that will be written to the register.
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Problem 3: [15 pts] Consider the modules below.

module ba
( output logic [15:0] next_x, next_y, x, y,

input uwire [15:0] a, c, input uwire clk );

always_ff @( posedge clk ) x = next_x;

assign next_x = a;

assign next_y = x + c;

always_ff @( posedge clk ) y = next_y;

endmodule

module test_ba;

uwire [15:0] x, y, next_x, next_y;

logic [15:0] a, c;

logic clk;

ba ba1( next_x, next_y, x, y, a, c, clk );

initial begin

// t = 0

clk = 0;

a = 0; c = 0;

#1; // t = 1

clk = 1;

#1; // t = 2

clk = 0;

#1; // t = 3

clk = 1;

#1; // t = 4

clk = 0; a <= 1; c <= 10; // Line t4

#1; // t = 5

clk = 1;

#1; // t = 6

clk = 0;

#1; // t = 7

clk = 1; a <= 2; c <= 20; // Line t7

#1; // t = 8

clk = 0;

end

endmodule
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(a) Complete the timing diagram so that it shows the values of next_x, next_y, x, and y that would be
produced with the modules above. Note: In the original exam test\_ba did not use non-blocking assignments
to a and c.

�Complete timing diagram from t = 4 to t = 8.1. �Note that there is a negative clock edge at t = 4.

Solution appears above.

(b) At t = 5 we can be sure that y=next_y will execute before next_y=x+c. Explain how this ordering is
assured by the rules for the event queue.

�Explain how event queue regions assure y=next y executes before next y=x+c at t = 5.

At t = 5 clk changes from 0 to 1, resulting in the two always ff items being scheduled. The two will eventually reach the active

region of the event queue, and one of them will be chosen first. Assume that the first always ff is chosen first. The next y

assignment has x and c in its sensitivity list, and so it is only scheduled for execution when at least one of these changes. At t = 5
x changes, and that will result in the next y assignment being placed in the inactive region of the event queue. The scheduler will

continue to remove and execute events from the active region until the active region is empty. Therefore the second always ff is

guaranteed to execute before the next y assignment.

(c) Notice that a and c are assigned using non-blocking assignments on Lines t4 and t7. Explain why the
order of execution would be ambiguous at t = 7 if line t7 used blocking assignments: a=1; c=10;. Note:
This question was not in the original exam.

Describe ambiguity (more than one possible execution order) if blocking assignments were used.

Would non-blocking assignments x <= next x and y <= next y remove the ambiguity? Explain.
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Problem 4: [20 pts] Answer each question below.

(a) The foolish sqrt module below has several issues.

module sqrt #( int w = 16 )

( output logic [w-1:0] r, input uwire [w-1:0] a );

always_comb begin

r = 0;

while ( r * r < a ) r++;

end

endmodule

�Explain why, due to the Verilog rules for bit widths, the expression r * r < a won’t compute the intended
result.

Because r and a are 16 bits the computation will be done to 16 bits of precision, and so due to overflow r*r<a can be false when

it should be true.

�Why is the sqrt module likely not synthesizeable?

Because the maximum number of iterations of the while loop cannot be directly determined. The maximum number of iterations

in fact will be about 2w/2, and it’s not impossible that a synthesis program would figure that out. It’s just not likely because this is

not the typical loop that would be used to describe hardware.

�What would be the problem with the hardware if it were synthesizable?

The maximum number of iterations is 2w/2. For the default value that’s 28 = 256. There would need to be 256 multiply units,

256 comparison units, and 256 muxen. That’s alot of hardware. And anyway there are much better ways of computing a square root.
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(b) Consider the two division modules below. In the first a2 is a parameter, in the second it is a module
port. Use the div_demo module for your answers to the questions below.

module our_div_by
#( int wq = 5, wd = 10, logic [wd-1:0] a2 = 4 )

( output uwire [wq-1:0] quot, input uwire [wd-1:0] a1 );

assign quot = a1/a2;

endmodule

module our_div
#( int wq = 5, wd = 10 )

( output uwire [wq-1:0] quot, input uwire [wd-1:0] a1, a2 );

// cadence inline

assign quot = a1/a2;

endmodule

module div_demo
#( int w = 21 )

( output uwire [w-1:0] d1, d2,

input uwire [w-1:0] x1, x2, x3, x4 );

localparam logic [w-1:0] y1 = 4755;

// Could replace our_div with our_div_by because y1 is constant.

our_div #(w,w) dwould_work(d1, x1, y1);

// Could not replace our_div with our_div_by because

// divisor (x2) not a constant.

our_div #(w,w) dwould_not_work(d2, x1, x2);

endmodule

� Show an instantiation of our div for which our div by could work.

� Show an instantiation of our div for which our div by could not work.

Solution appears above. To use our div by the divisor needs to be a constant. That’s the case in the first example, but not in

the second example

�Explain how the use of the cadence inline pragma in our div makes it possible to instantiate our div in
places that otherwise might need our div by.

It ensures that each instantiation of our div will be optimized separately based on its arguments. Without the pragma the synthesis

program might optimize our div once, assuming two non-constant inputs, and then copy the optimized description to places where

there are constant inputs.
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(c) Answer the following questions about latency and throughput.

�Define latency.

Latency is the amount of time needed to compute a result from start to finish. What a result is depends on the context. The result

might be computed combinationally, or sequentially over several cycles.

�Define throughput.

Throughput is the number of results computed per unit time. For example, if over 10 seconds 200 results are computed, the throughput

is 200/10 = 20 results per second.

Consider a sequential circuit (such as mult_step from Homework 6) and a pipelined version of the sequential
circuit (such as multi_step_pipe). Assume that both have the same clock frequency.

�Remembering that the clock frequencies are the same, compared to the sequential version, does the pipelined
version typically have

© lower latency, ×© the same latency, or ×© higher latency. �Explain.

It depends. In a reasonable design the latency of the sequential version will be equal to or possibly greater than the pipelined version.

A sequential design can re-use hardware, and so if it prioritizes low cost it will use less hardware over a greater number of cycles

resulting in a higher latency than a pipelined design.

�Compared to the sequential version, does the pipelined version typically have

© lower throughput, © the same throughput, or ×© higher throughput. �Explain.

By definition, a pipelined circuit computes a result each clock cycle, and so its throughput is high. A sequential circuit will require

several cycles to compute something and so its throughput will be lower.

� Ignoring the cost of registers, compared to the sequential version, does the pipelined version typically have

© lower cost, © the same cost, or ×© higher cost. �Explain.

The sequential version re-uses units (such as arithmetic units) over multiple cycles. The pipelined version must have one unit for each

operation, and so its cost will be higher.
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