
Name Formatted For Two-Sided Printing

Digital Design using HDLs

LSU EE 4755

Final Examination

Wednesday, 8 December 2021 7:30 CST

Alias

Problem 1 (30 pts)

Problem 2 (35 pts)

Problem 3 (15 pts)

Problem 4 (20 pts)

Exam Total (100 pts)

Good Luck!

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

https://www.ece.lsu.edu/koppel/v/

Problem 1: [30 pts] For the modules in this problem input sample holds a new value each cycle, and
output r_avg holds the average of the last n_samples inputs. (Ignore the fact that the module needs but
lacks a reset.)

(a) For the module below show the hardware that will be inferred when instantiated with default parameters.
Be sure to optimize for the default value of n_samples.

module ravg2 #(int w = 8, n_samples = 4)

(output logic [w-1:0] r_avg,

input uwire [w-1:0] sample, input uwire clk);

logic [w-1:0] samples[n_samples];

parameter int wm = $clog2(n_samples);

parameter int ws = w + wm;

logic [ws-1:0] tot;

always_ff @(posedge clk) begin

samples[0] <= sample;

for (int i=1; i<n_samples; i++) samples[i] <= samples[i-1];

tot <= tot - samples[n_samples-1] + samples[0];

end

always_comb r_avg = tot / n_samples;

endmodule

2 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

Show hardware for the module above using default parameter values.

Optimize for these parameter values.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

3

(b) The module to the right is similar to ravg2 except that it has three arithmetic unit instantiations: an
adder, a subtractor, and a divide-by-constant unit. Modify ravg3 so that it uses these modules. For full
credit connect them so that the critical path passes through at most one module per cycle. In a correct
solution r_avg will arrive at the output of ravg3 later than it would in module ravg2.

Modify ravg3 so that it uses the three arithmetic units.

For full credit, the critical path can go through at most one arithmetic unit per cycle.

The connections to the arithmetic units can be changed (say from aa1 to something else).

Do not add unnecessary cost or delay.

4 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

module ravg3 #(int w = 8, n_samples = 4)

(output logic [w-1:0] r_avg,

input uwire [w-1:0] sample,

input uwire clk);

logic [w-1:0] samples[n_samples];

parameter int wm = $clog2(n_samples);

parameter int ws = w + wm;

logic [ws-1:0] tot;

always_ff @(posedge clk) begin

samples[0] <= sample;

for (int i=1; i<n_samples; i++) samples[i] <= samples[i-1];

tot <= tot - samples[n_samples-1] + samples[0]; // Modify or eliminate this line.

end

always_comb r_avg = tot / n_samples; // Modify or eliminate this line.

uwire [ws-1:0] sum, diff;

uwire [ws-1:0] aa1, aa2, da1;

uwire [w-1:0] quot;

uwire [w-1:0] sa1, sa2;

our_adder #(ws,ws) add1(sum, aa1, aa2);

our_sub #(ws,w) sub2(diff, sa1, sa2);

our_div_by #(w,ws,n_samples) div3(quot, da1);

endmodule

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

5

Problem 2: [35 pts] Appearing below is a Verilog description of a lower-cost version of the bit_keeper

module from Homework 4 and a diagram of the hardware.

typedef enum { Cmd_Reset=0, Cmd_Rot_To=1, Cmd_Write=2, Cmd_Nop=3, Cmd_SIZE } Command;

module rot_left #(int w = 10, amt = 1)

(output uwire [w-1:0] r, input uwire [w-1:0] a);

assign r = { a[w-amt-1:0], a[w-1:w-amt] };

endmodule

module bit_keeper_lite #(int wb = 64, wi = 8, ws = $clog2(wb))

(output logic [wb-1:0] bits, output uwire ready,

input uwire [1:0] cmd, input uwire [wi-1:0] din,

input uwire [ws-1:0] pos, input uwire clk);

localparam int ramt_a = 1; // Specify Rotation Amounts

localparam int ramt_b = 1 << (ws >> 1);

uwire [wb-1:0] ra, rb;

rot_left #(wb,ramt_a) rl1(ra,bits);

rot_left #(wb,ramt_b) rl8(rb,bits);

logic [ws-1:0] rot_to_do; // Remaining amount of rotation to do.

assign ready = rot_to_do == 0;

always_ff @(posedge clk) case (cmd)

Cmd_Reset: begin bits = 0; rot_to_do = 0; end

Cmd_Rot_To: rot_to_do = pos; // Initialize rotation. Rotate during Nop.

Cmd_Write: bits[wi-1:0] = din;

Cmd_Nop: // Continue Executing a Cmd_Rot_To

if (rot_to_do >= ramt_b) begin

bits = rb; // Use output of larger rot module.

rot_to_do -= ramt_b; // Decrement remaining rot amt.

end else if (rot_to_do >= ramt_a) begin

bits = ra; // Use output of smaller rot module.

rot_to_do -= ramt_a; // Decrement remaining rot amt.

end

endcase

endmodule

(a) Find the cost and delay of the illustrated hardware using the simple model. Take into account the
presence of constants. For the addition and comparison units assume a ripple implementation. Show any
assumptions made. (See the next part before solving this one.)

Show cost in terms of wb, wi, and ws. Take into account constants.

Show delays and arrival times on the diagram, and highlight the critical path. These should be in terms
of wb, wi, and ws.

6 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

wb-1:wi

c
lk

0

p
o
s

ra
m
t_
b

ra
m
t_
a

-r
a
m
t_
b

-r
a
m
t_
a

>
>

+ +

rot_left
(amt=ramt_a)

rot_left
(amt=ramt_b) 0

lsb

c
m
d

d
in

bits

wb

wi

2

ws

bit_keeper_lite

wb

ws ro
t_to

_d
o

rot_to_do

bits

bits

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

7

(b) In class we assume that a four-input mux is implemented using a reduction tree of 3 two-input muxen.
For the illustrated hardware that would result in a longer critical path than is necessary. Modify the diagram
on the right to show a better way of implementing the four-input multiplexors.

Replace four-input multiplexors with two-input muxen connected to reduce critical path.

(c) Notice that care was taken to ensure that ramt_b is a power of 2. Explain how the fact that ramt_b is
a power of two reduces the cost of the adder and comparison unit operating on ramb_b. Also explain how a
power-of-2 ramb_b can reduce the cost of the other adder and comparison unit, if the synthesis program is
clever enough. Hint: Consider the binary representation of rot_to_do.

Since ramt b is a power of 2 the adder and comparison unit connected to ramt b are lower cost because:

Since ramt b is a power of 2 the adder and comparison unit connected to ramt a (yes, a) are lower cost
because:

8 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

wb-1:wi

c
lk

0

p
o
s

ra
m
t_
b

ra
m
t_
a

-r
a
m
t_
b

-r
a
m
t_
a

>
>

+ +

rot_left
(amt=ramt_a)

rot_left
(amt=ramt_b) 0

lsb

c
m
d

d
in

bits

wb

wi

2

ws

bit_keeper_lite

wb

ws ro
t_to

_d
o

rot_to_do

bits

bits

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

9

(d) Appearing below is a version of bit_keeper_lite with four ready outputs, r1, r2, r3, and r4. On the
diagram add hardware that will be synthesized for each.

module bit_keeper_lite #(int wb = 64, wi = 8, ws = $clog2(wb))

(output logic [wb-1:0] bits, output uwire r1, output logic r2, r3, r4,

input uwire [1:0] cmd, input uwire [wi-1:0] din,

input uwire [ws-1:0] pos, input uwire clk);

localparam int ramt_a = 1;

localparam int ramt_b = 1 << (ws >> 1);

uwire [wb-1:0] ra, rb;

rot_left #(wb,ramt_a) rl1(ra,bits);

rot_left #(wb,ramt_b) rl8(rb,bits);

logic [ws-1:0] rot_to_do;

assign r1 = rot_to_do == 0; // [] Show hardware for r1.

always_ff @(posedge clk) begin

r2 = rot_to_do == 0; // [] Show hardware for r2.

case (cmd)

Cmd_Reset: begin bits = 0; rot_to_do = 0; end

Cmd_Rot_To: rot_to_do = pos;

Cmd_Write: bits[wi-1:0] = din;

Cmd_Nop: begin

if (rot_to_do >= ramt_b) begin

bits = rb;

rot_to_do -= ramt_b;

end else if (rot_to_do >= ramt_a) begin

bits = ra;

rot_to_do -= ramt_a;

end

r3 = rot_to_do == 0; // [] Show hardware for r3.

end

endcase

r4 = rot_to_do == 0; // [] Show hardware for r4.

end

endmodule

Show hardware that will be synthesized for r1, r2, r3, and r4.

10 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

wb-1:wi

c
lk

0

p
o
s

ra
m
t_
b

ra
m
t_
a

-r
a
m
t_
b

-r
a
m
t_
a

>
>

+ +

rot_left
(amt=ramt_a)

rot_left
(amt=ramt_b) 0

lsb

c
m
d

d
in

bits

wb

wi

2

ws

bit_keeper_lite

wb

ws ro
t_to

_d
o

rot_to_do

bits

bits

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

11

Problem 3: [15 pts] Consider the modules below.

module ba
(output logic [15:0] next_x, next_y, x, y,

input uwire [15:0] a, c, input uwire clk);

always_ff @(posedge clk) x = next_x;

assign next_x = a;

assign next_y = x + c;

always_ff @(posedge clk) y = next_y;

endmodule

module test_ba;

uwire [15:0] x, y, next_x, next_y;

logic [15:0] a, c;

logic clk;

ba ba1(next_x, next_y, x, y, a, c, clk);

initial begin

// t = 0

clk = 0;

a = 0; c = 0;

#1; // t = 1

clk = 1;

#1; // t = 2

clk = 0;

#1; // t = 3

clk = 1;

#1; // t = 4

clk = 0; a <= 1; c <= 10; // Line t4

#1; // t = 5

clk = 1;

#1; // t = 6

clk = 0;

#1; // t = 7

clk = 1; a <= 2; c <= 20; // Line t7

#1; // t = 8

clk = 0;

end

endmodule

12 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

0 1 2 3

a

c

next_x

next_y

x

y

4 5 6 7

0

0

1

10

2

20

0

0

0

0

8

(a) Complete the timing diagram so that it shows the values of next_x, next_y, x, and y that would be
produced with the modules above. Note: In the original exam test_ba did not use non-blocking assignments
to a and c.

Complete timing diagram from t = 4 to t = 8.1. Note that there is a negative clock edge at t = 4.

(b) At t = 5 we can be sure that y=next_y will execute before next_y=x+c. Explain how this ordering is
assured by the rules for the event queue.

Explain how event queue regions assure y=next y executes before next y=x+c at t = 5.

(c) Notice that a and c are assigned using non-blocking assignments on Lines t4 and t7. Explain why the
order of execution would be ambiguous at t = 7 if line t7 used blocking assignments: a=1; c=10;. Note:
This question was not in the original exam.

Describe ambiguity (more than one possible execution order) if blocking assignments were used.

Would non-blocking assignments x <= next x and y <= next y remove the ambiguity? Explain.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

13

Problem 4: [20 pts] Answer each question below.

(a) The foolish sqrt module below has several issues.

module sqrt #(int w = 16)

(output logic [w-1:0] r, input uwire [w-1:0] a);

always_comb begin

r = 0;

while (r * r < a) r++;

end

endmodule

Explain why, due to the Verilog rules for bit widths, the expression r * r < a won’t compute the intended
result.

Why is the sqrt module likely not synthesizeable?

What would be the problem with the hardware if it were synthesizable?

14 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

(b) Consider the two division modules below. In the first a2 is a parameter, in the second it is a module
port. Use the div_demo module for your answers to the questions below.

module our_div_by
#(int wq = 5, wd = 10, logic [wd-1:0] a2 = 4)

(output uwire [wq-1:0] quot, input uwire [wd-1:0] a1);

assign quot = a1/a2;

endmodule

module our_div
#(int wq = 5, wd = 10)

(output uwire [wq-1:0] quot, input uwire [wd-1:0] a1, a2);

// cadence inline

assign quot = a1/a2;

endmodule

module div_demo
#(int w = 21)

(output uwire [w-1:0] d1, d2,

input uwire [w-1:0] x1, x2, x3, x4);

localparam logic [w-1:0] y1 = 4755;

endmodule

Show an instantiation of our div for which our div by could work.

Show an instantiation of our div for which our div by could not work.

Explain how the use of the cadence inline pragma in our div makes it possible to instantiate our div in
places that otherwise might need our div by.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

15

(c) Answer the following questions about latency and throughput.

Define latency.

Define throughput.

Consider a sequential circuit (such as mult_step from Homework 6) and a pipelined version of the sequential
circuit (such as multi_step_pipe). Assume that both have the same clock frequency.

Remembering that the clock frequencies are the same, compared to the sequential version, does the pipelined
version typically have

© lower latency, © the same latency, or © higher latency. Explain.

Compared to the sequential version, does the pipelined version typically have

© lower throughput, © the same throughput, or © higher throughput. Explain.

Ignoring the cost of registers, compared to the sequential version, does the pipelined version typically have

© lower cost, © the same cost, or © higher cost. Explain.

16 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

17

	Problem 1
	Part a
	Part b

	Problem 2
	Part a
	Part b
	Part grrcount =subprobno
elax advance grrcount by-97
elax a
	Part grrcount =subprobno
elax advance grrcount by-97
elax a

	Problem 3
	Part a
	Part b
	Part grrcount =subprobno
elax advance grrcount by-97
elax a

	Problem 4
	Part a
	Part b
	Part grrcount =subprobno
elax advance grrcount by-97
elax a

	Problem 1
	Part a
	Part b

	Problem 2
	Part a
	Part b
	Part grrcount =subprobno
elax advance grrcount by-97
elax a
	Part grrcount =subprobno
elax advance grrcount by-97
elax a

	Problem 3
	Part a
	Part b
	Part grrcount =subprobno
elax advance grrcount by-97
elax a

	Problem 4
	Part a
	Part b
	Part grrcount =subprobno
elax advance grrcount by-97
elax a

