
Name Solution

Digital Design Using HDLs

LSU EE 4755

Midterm Examination

Wednesday, 30 October 2019 10:30–11:20 CDT

Alias
That’s · · · all.

Problem 1 (20 pts)

Problem 2 (25 pts)

Problem 3 (27 pts)

Problem 4 (28 pts)

Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/

Problem 1: [20 pts] Appearing below is one of the solutions to Homework 2, the count leading zeros
module.

module clz_bi_tree #(int w = 19, int ww = $clog2(w+1))

(output uwire [ww:1] nlz, input uwire [w:1] a);

if (w == 1) begin

assign nlz = ~ a;

end else begin

localparam int wlo = w/2, whi = w - wlo;

localparam int wwlo = $clog2(wlo+1), wwhi = $clog2(whi+1);

uwire [wwlo:1] lz_lo;

uwire [wwhi:1] lz_hi;

clz_bi_tree #(wlo) clo(lz_lo, a[wlo:1]);

clz_bi_tree #(whi) chi(lz_hi, a[w:wlo+1]);

assign nlz = lz_lo < wlo ? lz_lo : wlo + lz_hi;

end

endmodule

Show the hardware that will be inferred for the module for w > 1. Just show one level, don’t show what is
inside of clo and chi.

� Show synthesized hardware for one level. � Be sure to show clo and chi (but not their contents).

� Clearly show module input and output ports, � and show bit range in connections.

The solution appears below. Because w > 1 the terminal case is not elaborated and so not inferred. Of course, there is no hardware

for computing elaboration-time constants such as wwlo.

clz_bi_treew:wlo+1

a

n
lz

w

ww

chi

clz_bi_treewlo:1

clo

wlo +

clz_bi_tree

lz_lo

lz_hi

wlo
<

2

Problem 2: [25 pts] In Homework 2 a clz (count leading zeros) module was constructed recursively by
splitting the input bit vector and connecting each half to a smaller instance. The incomplete module below
is similar except that the input vector is to be split into thirds and each third connected to a recursive
instance. Complete the module.

� Complete so that clz tri tree computes clz.

The solution appears below.

module clz_tri_tree
#(int w = 19, int ww = $clog2(w+1))

(output uwire [ww-1:0] nlz, input uwire [w-1:0] a);

if (w == 1) begin

assign nlz = ~ a;

// SOLUTION: Add a case for w=2 to avoid a zero-bit recursive instance.

end else if (w == 2) begin

assign nlz = a[0] ? 0 : a[1] ? 1 : 2;

end else begin

// SOLUTION: Divide bits between modules, be sure not to loose any.

localparam int wlo = w/3;

localparam int wmi = wlo;

localparam int whi = w - wlo - wmi;

localparam int wwlo = $clog2(wlo+1), wwmi = $clog2(wmi+1), wwhi = $clog2(whi+1);

uwire [wwlo-1:0] lz_lo;

uwire [wwmi-1:0] lz_mi;

uwire [wwhi-1:0] lz_hi;

// SOLUTION: Divide a between modules.

clz_tri_tree #(wlo) clo(lz_lo, a[wlo-1 : 0]);

clz_tri_tree #(wmi) cmi(lz_mi, a[w-whi-1 : wlo]);

clz_tri_tree #(whi) chi(lz_hi, a[w-1 : w-whi]);

// SOLUTION: Combine the results of the three modules.

assign nlz = lz_lo < wlo ? lz_lo :

lz_mi < wmi ? wlo + lz_mi : wlo + wmi + lz_hi;

end

endmodule

3

Problem 3: [27 pts] Appearing below are modules that test if two bit vectors are equal in some way.

(a) Show the hardware for the module below at the default size using basic gates: AND, OR, XOR, NOTs,
and bubbled inputs and outputs. Do not use something like == .

module eq #(int w = 4)(output uwire equal, input uwire [w-1:0] a, b);

assign equal = a == b;

endmodule

� Show hardware using basic gates at default size.

The solution appears below with some colored labels to help with the next subproblem. Note that—never forget that—equality is

tested using XNOR (exclusive nor) gates.

a[0]

b[0]

a[1]

b[1]

a[2]

b[2]

a[3]

b[3]

a

b

w

w

e
q
u
a
l

2 lg w
eq

A critical path.

(b) Show the cost and delay of the module in terms of w (the value of parameter w) using the simple model.

� In terms of w: � Cost and � Delay.

The cost is [3w + w − 1] uc = [4w − 1] uc. The 3w term is for the XNOR gates and w − 1 term is for the big AND gate.

(In the solution above three 2-input AND gates are shown rather than one 4-input AND gate.) The delay is [2 + dlgwe] ut, the 2

term is for an XNOR gate and the lgw term is for a path through the big AND gate.

To compute delay a critical path is needed. A critical path for the equality unit is shown above in red, starting at a[1]. Because of

symmetry in the equality unit the critical path could have started at any input bit. The path through an XNOR is two gates, and a

path through the big AND is dlgwe gates.

4

(c) The module below also tests equality but it does so after shifting the first operand. Show the hardware
in terms of basic gates after optimization.

module eqs #(int w = 6, int s = 2)(output uwire equal, input uwire [w-1:0] a, b);

localparam logic [w+s-1:0] zero = 0;

assign equal = zero + (a << s) == b;

endmodule

� Show hardware at default size after optimization.

The solution appears below. Because the shift is by a constant amount no shifter is needed, instead the bit positions are adjusted

(which is why, for example, b[2] is compared to a[0]). Because we are adding zero no adder is needed. Because of the shift the

low bits of b and the high bits of a are compared to zero.

a[0]

b[2]

a[1]

b[3]

a[2]

b[4]

a[3]

b[5]

a

b

6

6

e
q
u
a
l

eqs
b[1]

b[0]

a[5]

a[4]

(d) The module below performs a different operation than the one above. Explain the difference and show
an example.

module eqt #(int w = 6, int s = 2) (output uwire equal, input uwire [w-1:0] a, b);

assign equal = (a << s) == b;

endmodule

� Difference between operation eqs and eqt.

� Show a value for a and b for which the output of eqs and eqt are different.

In module eqs the s MSB are compared to zero, whereas in eqt the s MSB are ignored. For example, consider w = 6 and s = 2, and

for a = 10 11112 and b = 11 11002. Module eqs finds them not equal (because eight-bit quantities 1011 11002 6= 0011 11002)

but eqt finds them equal (because six-bit quantities 11 11002 = 11 11002).

5

Problem 4: [28 pts] Answer each question below.

(a) Appearing below is synthesis data taken from the solution to Homework 2. The Delay Target column
shows the maximum delay constraint given to the synthesis program.

Module Name Area Delay Delay

Actual Target

clz_w32 26290 3.110 10.000 ns

clz_tree_w32 21706 1.425 10.000 ns

clz_w32_1 36476 1.007 0.100 ns

clz_tree_w32_5 37356 0.577 0.100 ns

� In general, which result should be used if the only goal were to minimize area,

the results for the �© 10.0 ns Target or for the © 0.1 ns Target ? � Explain.

When the delay target is large the synthesis program is freer to minimize area (cost). It can try different cost-reducing optimizations

without having them being rejected because they result in higher delay (as long as that delay is below the delay target).

� In general, which result should be used if the only goal were to minimize delay,

the results for the © 10.0 ns Target or for the �© 0.1 ns Target ? � Explain.

The synthesis program first tries to meet the delay target, then reduces cost. If the delay target is very low it will devote all of its

effort to reducing delay.

(b) Provide w-bit declarations requested below.

uwire [0 : w-1] bit_zero_is_msb; // SOLUTION

uwire [w-1 : 0] bit_zero_is_lsb; // SOLUTION

uwire [w/2 : -w/2] bit_zero_is_middle; // SOLUTION.

6

(c) The module fragment below starts with six declarations (the object names starting with r), each providing
a value (either a+b or x+y). Some of those declarations will result in compile errors. Identify them and explain
the problem. If possible fix the problem without changing the object kind (localparam, uwire, var).

module my_mod
#(int w = 10, int x = 11, int y = 12)

(input uwire [w:1] a, b);

localparam logic [w:1] r1p = a + b; // SOL: Can’t fix, a + b not constant.

localparam logic [w:1] r2p = x + y; // SOL: Okay.

uwire [w:1] r1w = a + b; // SOL: Okay.

uwire [w:1] r2w = x + y; // SOL: Okay.

logic [w:1] r1l = a + b; // SOL: Wrong, can’t continuously assign var type.

logic [w:1] r2l = x + y; // SOL: Wrong, can’t continuously assign var type.

// SOLUTION: Fixes:

logic [w:1] r1l, r2l;

always_comb begin r1l = a + b; r2l = x + y; end

// The following is not wrong, but it’s longer than the original.

uwire [w:1] r12, r2w;

assign r1w = a + b;

assign r2w = x + y;

� Indicate which ones are wrong and � the reason that they are wrong.

� Indicate which can’t be fixed and � and explain why not.

The value assigned to a localparam must be an elaboration-time constant. That’s true for x+y because they are parameters, but

it’s not true for a+b because a and b are module inputs and so could never be elaboration-time constants.

The assignments to r1w and r2w are fine. SystemVerilog allows a net (including uwire) declaration to include a continuous

assignment.

The assignments to r1l and r2l are wrong because var objects can only be assigned in procedural code. That’s easy to fix by

providing an always block, which is shown above.

(Note that a declaration like logic [w:1] v; is shorthand for var logic [w:1] v; and a declaration like uwire [w:1]

u; is shorthand for uwire logic [w:1] u;.)

Other than for r1p the size, type, and kind of a, b, x, and y are not a problem. The sum x+y is a 32-bit 2-state integer.

It’s not an error to assign that to a w-bit four state type. Also note that the data type for all of the r[12][pwl] objects are

logic. (Note that r[12][pwl] is an ad-hoc regular expression matching the objects being assigned above. Regular expressions are

something you should know in general, but not for this course.)

Grading Note: Students had more difficulty with this problem than I expected. As I pointed out in class, if
you don’t understand the different object kinds (net, var, param) and how they should be used you’ll waste
lots of time blindly changing things until the error messages go away.

7

https://xkcd.com/208/

(d) Explain what $realtobits does, and what hardware will be synthesized for it, if any.

always_comb begin

x = $realtobits(r);

end

� Purpose of realtobits.

The realbits system task is used to move a set of bits from an object declared real to one declared as some kind of integer (say,

logic [63:0]). The bits are moved unchanged. If, instead the assignment were x=r; the simulator would convert the real

value in r to an integer.

� Synthesized hardware.

None. If we were to draw a diagram, there would be a wire labeled with both x and r.

8

