
Name

Digital Design using HDLs

LSU EE 4755

Midterm Examination

Friday, 26 October 2018 9:30–10:20 CDT

Alias

Problem 1 (22 pts)

Problem 2 (20 pts)

Problem 3 (23 pts)

Problem 4 (10 pts)

Problem 5 (25 pts)

Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/

Problem 1: [22 pts] The illustration below shows some of the inferred hardware for the behav_merge

module from the solution to Homework 6. The hardware that’s shown is for typical iterations i and i+1.
Show the hardware for iterations i=0 and i=1 with optimizations applied.

Show hardware for iterations i=0 and i=1.

Also show hardware for code before for loop.

Optimize hardware. Take into account possible values
of ia and ib.

module behav_merge

#(int n = 4, int w = 8)

(output logic [w-1:0] x[2*n],

input uwire [w-1:0] a[n], b[n]);

logic [$clog2(n+1)-1:0] ia, ib;

always_comb begin

ia = 0; ib = 0;

for (int i = 0; i < 2*n; i++)

if (ib==n || ia!=n && a[ia]<=b[ib])

x[i] = a[ia++]; else x[i] = b[ib++];

end

endmodule

behav_merge, n, w
a

b

a[0]

a[1]

b[0]

b[1]

ibia

n

n

=

�

1 1

+ +

=

0

1

00 11

x[i]

a[0]

a[1]

b[0]

b[1]

ibia

n

n

=

�

1 1

+ +

=

0

1

0

ibia

0 11

x[i+1]

x

w

lg n

w

lg n

w

w

2

Problem 2: [20 pts] Appearing once again is part of the Homework 6 solution, this time with items labeled
in blue. Show the cost and delay of these, as requested below. See the previous problem for the Verilog
description. The phrase most expensive means for the value of i for which the device needs all inputs, even
after optimization. For the mux, show the cost and delay for the tree implementation.

behav_merge, n, w
a

b

a[0]

a[1]

b[0]

b[1]

ibia

n

n

=

≤

1 1

+ +

=

0

1

00 11

x[i]

a[0]

a[1]

b[0]

b[1]

ibia

n

n

=

≤

1 1

+ +

=

0

1

0

ibia

0 11

x[i+1]

x

w

lg n

w

lg n

w

w

a-mux

i-mux

a-lim

Cost of most expensive a-mux in terms of
n and w.

Delay of most expensive a-mux in terms
of n and w.

Cost of most expensive i-mux in terms of
n and w.

Delay of most expensive i-mux in terms
of n and w.

Cost of most expensive a-lim in terms of n and w after optimizing for constant inputs.

Delay of most expensive a-lim in terms of n and w after optimizing for constant inputs.

3

Problem 3: [23 pts] Output lt of module comp, below, should be 1 iff a is strictly less than b, and eq

should be 1 iff a==b. Both a and b are unsigned integers. The module recursively instantiates two instances
of itself, one is supposed to compare the low bits of the inputs, the other compares the high bits. Complete
the module so that it works for any positive w.

Complete the module, don’t miss the FILL IN items.

Make sure that it works for odd and even values of w.

module comp

#(int w = 8)

(output uwire lt, eq, input uwire [w-1:0] a, b);

if () begin // Terminating Case Condition <---- FILL IN

assign lt = !a && b;

assign eq = a == b;

end else begin

uwire llo, lhi, elo, ehi;

// Instantiate two comp modules, connect each to about half the inputs.

//

// ---- -------------- -------------- <-- FILL IN

comp #() clo(llo, elo, a[], b[]);

comp #() chi(lhi, ehi, a[], b[]);

assign lt = ; // <---- FILL IN

assign eq = ; // <---- FILL IN

end

endmodule

4

Problem 4: [10 pts] The output of plus_amt, x, is to be set to b + amt. Input b and output x are expected
to be in IEEE 754 double FP format (the same format as type real). (Note: the port declarations are not
to be modified in the problems below.) Several variations on the module appear below. Hint: Solution to
this problem require the correct use of realtobits and/or bitstoreal. Grading Note: The bonus problem
was not on the original exam.

(a) The module below does not compute the correct result. Fix the module by modifying the always_comb

block. The module does not need to be synthesizable.

Fix so that x is assigned the correct result, amt plus value of b.

module plus_amt

#(real amt = 1.5)

(output logic [63:0] x, input uwire [63:0] b); // DO NOT modify ports.

// Both x and b are IEEE 754 doubles (reals).

always_comb begin

// Change code below.

x = b + amt;

end

endmodule

(b) [0 pts] Bonus Problem Complete the module below so that it uses the CW_fp_add module to do the
addition. The parameters to CW_fp_add are already correct, just connect the inputs and outputs.

Complete so that it computes the correct result.

module plus_amt

#(real amt = 1.5)

(output logic [63:0] x, input uwire [63:0] b); // DO NOT modify ports.

// Both x and b are IEEE 754 doubles (reals).

uwire logic [7:0] s; // Unused.

// Computes z = a + b.

CW_fp_add #(.sig_width(52),.exp_width(11)) // This line correct, don’t change.

fadd(.status(s), .rnd(0), // This line correct, don’t change.

.z(), .a(), .b());

endmodule

5

Problem 5: [25 pts] Show the hardware that will be inferred for the Verilog code below.

Clearly show module ports.

Show inferred hardware. Don’t optimize.

Pay close attention to what is and is not inferred as a register.

module regs #(int w = 10, int k1 = 20, int k2 = 30)

(output logic [w-1:0] y,

input logic [w-1:0] b, c,

input uwire clk);

logic [w-1:0] a, x, z;

always_ff @(posedge clk) begin

a = b + c;

if (a > k1) x = b + 10;

if (a > k2) z = b + x; else z = c - x;

y = x + z;

end

endmodule

6

