
LSU EE 4755 Homework 2 Due: 25 September 2017

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete

Verilog for this assignment without visiting the lab visit

https://www.ece.lsu.edu/koppel/v/2017/hw02.v.html.

Problem 1: Suppose point x1 has value a1, and suppose point x2 has value a2. Let a(x) be
the value at point x determined by linearly interpolating the values at x1 and x2. For example,
a(x1) = a1 and a(1

2
(x1 + x2)) = a1 +

1

2
(a1 + a2). In general, a(x) = a1 + (x − x1)

a2−a1

x2−x1

for real
values x1, x2, a1, a2, and x. Define a version of linear interpolation, ai(j), in which the point to
interpolate, j, is relative to x1 and in which the interpolated value is the floor of the actual value.
That is, ai(j) = ⌊a1 + j a2−a1

x2−x1

⌋. For example, ai(0) = ⌊a1⌋ and ai(x2 − x1) = ⌊a2⌋.
Module interp_behav in hw02.v performs such a linear interpolation. (You might want to

examine this module to double-check your understanding of what ai(j) does.) Alas, it is not syn-
thesizable. Modify module interp in hw02.v (partially shown below) so that it correctly performs
the linear interpolation, is synthesizable, and uses the floating-point modules from the ChipWare
library. (Don’t try to do everything using integer arithmetic.) (Additional information is provided
after the subproblems.)

(a) Complete module interp below so that it sets output valid to 1 if ⌊x1⌋+ j ≤ ⌊x2⌋.

(b) Complete module interp below so that it sets output aj to ai(j) based on the values at its
input ports, with port names approximately matching the symbols used above.
module interp

#(int jw = 12, int amax = 255)

(output uwire valid,

output uwire [7:0] aj,

input uwire [31:0] x1, a1, x2, a2,

input uwire [jw-1:0] j);

endmodule

Module interp_behav is not synthesizable because it uses operators to perform floating-point
arithmetic. In module interp instantiate ChipWare modules to perform floating-point operations.
Module interp already instantiates an adder and a float-to-int converter. Find additional modules
in the ChipWare documentation, which can be found on the course references page. When using
a ChipWare module put in an include directive at the end of the file. See the end of hw02.v for
examples.

The testbench will test module interp, it should initially report lots of errors. Of course,
when you are done there should be zero errors.

Follow the synthesis steps on the course procedures page to determine if interp is synthesiz-
able. If the elaborate step is successful then the module is synthesizable.

Problem 2: Floating-point hardware is relatively costly. Compare the cost of FP and integer
arithmetic units by synthesizing equivalent FP and integer adders and dividers. Wrap the ChipWare
modules in your own modules, (such as fp_add in hw02.v) and set parameters so the FP and integer
units are comparable. Then modify the synthesis script, syn.tcl, so that it will synthesize these
modules. The modules should be added to the list assigned on the set modules line.

Based on the data collected above, indicate how much less you think the cost would be of an
interp module that used integer arithmetic.

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2017/hw02.v.html

