
Sequential Logic Introduction � Topics

Synthesis of Sequential Logic from Behavioral Code

Topics in This Set

Sequential Logic Basics, Differences with Combinational Logic

Coding of Registers

Simple example: counters.

Sequential shifter example.

syn-comb-1 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-1

Sequential Logic Introduction � Differences Between Sequential and Combinational Logic

Sequential v. Combinational Logic

It’s all about the flip-flop.

Storage devices are the distinguishing feature . . .

. . . that differentiate combinational and sequential logic.

Combinational Logic

Outputs only depend on current inputs.

No flip-flops, registers, or other devices that have state.

Sequential Logic

Outputs depend on current and past input.

Has state. Typically state kept by flip-flops and/or registers.

State changes usually synchronized with a clock.

syn-comb-2 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-2

Sequential Logic Introduction � Sequential Logic is Harder

Why sequential logic is so much harder than combinational logic.

Inference: There isn’t an operator that synthesizes to a flip-flop . . .

. . . as there is, say, with + for addition.

Logic Design: Designs are trickier . . .

. . . it’s not just what will happen . . .

. . . it’s not even just when it will happen . . .

. . . but whether this happens before that or after that.

Verilog Subtleties: Those ignorant of Verilog timing may be tormented. . .

. . . with seemingly arbitrary errors or behavior.

syn-comb-3 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-3

Inference of Registers � Genus’ Generic Flip-Flop

Inference of Registers

Genus’ Generic Flip-Flop: flop.

clk

d

sena

aclr srd

apre srl

q

flop

flop features:

Is positive edge triggered (clk).

Has input d and output q.

Has asynchronous preset (apre) and clear (alcr).

Has a sync. enable (sena) input.

syn-comb-4 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-4

Inference of Registers � Genus’ Generic Flip-Flop

clk

d

sena

aclr srd

apre srl

q

flop

Inference and Technology Mapping

During elaboration flop used for all inferred edge-triggered reg-
isters.

During technology mapping flop replaced with registers from
technology library.

syn-comb-5 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-5

Inference of Registers � Classroom Hardware Diagrams

Classroom Hardware Diagrams

The term register will be used for one or more flip-flops.

For inferred and optimized hardware. . .

. . . will use streamlined diagrams, omitting unused inputs:

clk

d

sena

aclr srd

apre srl

q

flop

−→

D Q

register_en

data val

clk

enable
en

syn-comb-6 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-6

Inference of Registers � Edge-Triggered Flip-Flop Inference � Inference Review

Edge-Triggered Flip-Flop Inference

Inference

Selecting a hardware component corresponding to a piece of Verilog behavioral code.

Performed by a synthesis program.

Relationship between behavioral Verilog and inferred hardware . . .

. . . is determined by the synthesis program. . .

. . . not by the Verilog standard or any other standard document.

syn-comb-7 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-7

Inference of Registers � Edge-Triggered Flip-Flop Inference � Rules

Edge-Triggered Flip-Flop Inference Rules

These Inference Rules

Based on Encounter RTL Compiler.

Reference: HDL Modeling in Encounter RTL Compiler 14.2 April 2015.

For inference of edge-triggered register R clocked by clk:

• R must be a variable type.

• R must be assigned in exactly one always block . . .

. . . and must be either consistently blocking (R=x;) . . .

. . . or consistently non-blocking (R<=x;).

• The always block must start with always or always ff.

• The always must be followed by an event control of the form @(posedge clk, ...).

syn-comb-8 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-8

Inference of Registers � Coding Common Edge-Triggered Registers � Simple

Simple Edge-Triggered Register

D Q

register

data val

clk

clk

data

val

t 0 1 2

7 3 1 24 98

0 7

7

9

module register
#(int width = 16)

(output logic [width-1:0] val,

input uwire [width-1:0] data,

input uwire clk);

always_ff @(posedge clk) val <= data;

endmodule

syn-comb-9 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-9

Inference of Registers � Coding Common Edge-Triggered Registers � With Enable

Register with Enable

D Q

register_en

data val

clk

enable
en

clk

data

val

t 0 1 2

7 3 1 24 98

0 7

6

9

enable

module register_en
#(int width = 16)

(output logic [width-1:0] val,

input uwire enable,

input uwire [width-1:0] data,

input uwire clk);

always_ff @(posedge clk)

if (enable) val <= data;

endmodule

syn-comb-10 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-10

Simple Example Circuits: Clocks � Clock with Reset

Clock with Reset

D Q

clk

16'd0

16'd1
+

count_reset

c

reset

c

c

c

Note multiple c values.

module count_reset
#(int bits = 16)

(output logic [bits-1:0] c,

input uwire reset,

input uwire clk);

always_ff @(posedge clk) if (reset) c <= 0; else c <= c + 1;

endmodule

syn-comb-11 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-11

Simple Example Circuits: Clocks � Clock with Threshold � Version One

Threshold Output
D Q

clk

16'd1

+ cc1

D Q

o
v
e
r_
th

o
v
e
r_
th

1

count_thd

th
re
s
h
o
ld

>

clk

t 0 1 2

31 2 4

8

0

threshold

c

c1

over_th

over_th1

3

1

2 4

c

5

2

0

0 1 0

0

module count_thd
#(int bits = 16)

(output logic [bits-1:0] c,

output logic over_th,

input uwire [bits-1:0] threshold,

input uwire clk);

always_ff @(posedge clk)

begin

c = c + 1;

over_th = c > threshold;

end

endmodule

syn-comb-12 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-12

Simple Example Circuits: Clocks � Clock with Threshold � Version One’s Problems

Two Issues:

Critical path through adder/comparison unit.

Do we really want a flip-flop for over th?

D Q

clk

16'd1

+ cc1

D Q

o
v
e
r_
th

o
v
e
r_
th

1

count_thd

th
re
s
h
o
ld

>

clk

t 0 1 2

31 2 4

8

0

threshold

c

c1

over_th

over_th1

3

1

2 4

c

5

2

0

0 1 0

0

syn-comb-13 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-13

Simple Example Circuits: Clocks � Clock with Threshold � Faster Version

Fix critical path issue.

D Q

clk

16'd1

+ cc

D Q

o
v
e
r_
th

o
v
e
r_
th

count_thd_alt2

th
re
s
h
o
ld

>

module count_thd_alt2
#(int bits = 16)

(output logic [bits-1:0] c,

output logic over_th,

input uwire [bits-1:0] threshold,

input uwire clk);

always_ff @(posedge clk)

begin

over_th = c > threshold;

c = c + 1;

end

endmodule

syn-comb-14 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-14

Simple Example Circuits: Clocks � Clock with Threshold � Alternative Threshold Behavior

React any time to threshold, not just at positive edge.

D Q

clk

16'd1

+ cc

o
v
e
r_
th

count_thd_alt

th
re
s
h
o
ld

>

module count_thd_alt
#(int bits = 16)

(output logic [bits-1:0] c,

output logic over_th,

input uwire [bits-1:0] threshold,

input uwire clk);

always_ff @(posedge clk) c <= c + 1;

always_comb over_th = c > threshold;

endmodule

syn-comb-15 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-15

Examples � 2018 Final Exam Problem 3

Show inferred logic for the following:

b

c
+

f
e

j
z g

a

✕

a

misc

+

clk

module misc #(int n = 8)

(output logic [n-1:0] a, g, e,

input uwire [n-1:0] b, c, j, f,

input uwire clk);

logic [n-1:0] z;

always_ff @(posedge clk) begin

a <= b + c; // Note: nonblocking assignment.

z = a + j;

g = z;

end

always_comb begin

e = a * f;

end

endmodule

syn-comb-16 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-16

Examples � 2018 Midterm Exam Problem 2

Show inferred logic for the following:

regs, w, k1, k2

c

b

0

1

w
+ a

+10

k1 >

>k2

x

-

+

+

z

y
z

z
y

x

x

clk

w

always_ff @ (posedge clk)module regs
#(int w = 10, int k1 = 20, int k2 = 30)

(output logic [w-1:0] y,

input logic [w-1:0] b, c,

input uwire clk);

logic [w-1:0] a, x, z;

always_ff @(posedge clk) begin

a = b + c;

if (a > k1) x = b + 10;

if (a > k2) z = b + x; else z = c - x;

y = x + z;

end

endmodule

syn-comb-17 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-17

Sequential Shifter

Example: Sequential Shifter

Remember: We can build a w-bit shifter using . . .

. . . dlgwe 2i-bit fixed-amount shifters and 2-input muxen . . .

. . . for i ∈ {20, 21, 22, . . . , 2dlgwe−1}.

Why not use one fixed shifter and use it up to w − 1 times?

Why not use fewer than dlgwe shifters and muxen . . .

. . . but use them multiple times?

We’ll start with one fixed shifter.

Idea sketch for sequential shifter.

Pass value through shifter amt times.

clk

start

re
a
d
y

amt

unshifted

s
h
if
te
d

shift_fixed

sf

shifted

unshifted

shift_lt_seq

sh
if
te

d

amt trips
thru shifter

syn-comb-18 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-18

Sequential Shifter

Idea sketch for sequential shifter.

clk

start

re
a
d
y

amt

unshifted

s
h
if
te
d

cnt

shift_fixed

sf

shifted

unshifted

shift_lt_seq

sh
if
te
d

cn
tcn

t

4'd1
-

Magic
Cloudtm

Use register cnt to count number of times.

syn-comb-19 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-19

Sequential Shifter

Timing.

clk

start

amt

cnt

ready

0

2

1

7

2 0

93
unsh-
ifted

Cycle
0

Cycle
1

shifted 9384 18 36

Cycle
2

Cycle
3

1

22

23
24 24

25

clk

start

re
a
d
y

amt

unshifted

s
h
if
te
d

cnt

shift_fixed

sf

shifted

unshifted

shift_lt_seq

sh
if
te
d

cn
tcn

t

4'd1
-

Magic
Cloudtm

1: External device provides inputs.

Inputs assumed to be available. . .

. . . early in clock cycle.

syn-comb-20 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-20

Sequential Shifter

Timing.

clk

start

amt

cnt

ready

0

2

1

7

2 0

93
unsh-
ifted

Cycle
0

Cycle
1

shifted 9384 18 36

Cycle
2

Cycle
3

1

22

23
24 24

25

clk

start

re
a
d
y

amt

unshifted

s
h
if
te
d

cnt

shift_fixed

sf

shifted

unshifted

shift_lt_seq

sh
if
te
d

cn
tcn

t

4'd1
-

Magic
Cloudtm

2: At positive edge:

cnt initialized to amt.

shifted initialized to unshifted.

syn-comb-21 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-21

Sequential Shifter

Timing.

clk

start

amt

cnt

ready

0

2

1

7

2 0

93
unsh-
ifted

Cycle
0

Cycle
1

shifted 9384 18 36

Cycle
2

Cycle
3

1

22

23
24 24

25

clk

start

re
a
d
y

amt

unshifted

s
h
if
te
d

cnt

shift_fixed

sf

shifted

unshifted

shift_lt_seq

sh
if
te
d

cn
tcn

t

4'd1
-

Magic
Cloudtm

3: Early in Cycle 1:

ready goes to zero.

syn-comb-22 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-22

Sequential Shifter

Timing.

clk

start

amt

cnt

ready

0

2

1

7

2 0

93
unsh-
ifted

Cycle
0

Cycle
1

shifted 9384 18 36

Cycle
2

Cycle
3

1

22

23
24 24

25

clk

start

re
a
d
y

amt

unshifted

s
h
if
te
d

cnt

shift_fixed

sf

shifted

unshifted

shift_lt_seq

sh
if
te
d

cn
tcn

t

4'd1
-

Magic
Cloudtm

4: During cycles 1 and 2:

New value of count is com-
puted, “shift” performed.

syn-comb-23 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-23

Sequential Shifter

Timing.

clk

start

amt

cnt

ready

0

2

1

7

2 0

93
unsh-
ifted

Cycle
0

Cycle
1

shifted 9384 18 36

Cycle
2

Cycle
3

1

22

23
24 24

25

clk

start

re
a
d
y

amt

unshifted

s
h
if
te
d

cnt

shift_fixed

sf

shifted

unshifted

shift_lt_seq

sh
if
te
d

cn
tcn

t

4'd1
-

Magic
Cloudtm

5: Beginning of cycle 3:

Ready signal set to 1.

syn-comb-24 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-24

Sequential Shifter

Notes about behavior.

clk

start

amt

cnt

ready

0

2

1

7

2 0

93
unsh-
ifted

Cycle
0

Cycle
1

shifted 9384 18 36

Cycle
2

Cycle
3

1

22

23
24 24

25

clk

start

re
a
d
y

amt

unshifted

s
h
if
te
d

cnt

shift_fixed

sf

shifted

unshifted

shift_lt_seq

sh
if
te
d

cn
tcn

t

4'd1
-

Magic
Cloudtm

Start signal must be stable at
positive edge.

Inputs required to be avail-
able early in clock cycle.

Result available at beginning
of clock cycle.

Ready signal available early
in clock cycle.

syn-comb-25 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-25

Sequential Shifter

Sequential Shifter Verilog

clk

start

re
a
d
y

amt

unshifted

s
h
if
te
d

cnt

shift_fixed

sf

shifted

unshifted

shift_lt_seq

sh
if
te
d

cn
tcn

t

4'd1
-

Magic
Cloudtm

module shift_lt_seq #(int wid_lg = 4, int wid = 1 << wid_lg)

(output logic [wid-1:0] shifted, output uwire ready,

input [wid-1:0] unshifted, input [wid_lg-1:0] amt,

input start, input clk);

uwire [wid-1:0] sf_out;

shift_fixed #(wid_lg,1) sf(sf_out, shifted, 1’b1); // Fixed Shifter

logic [wid_lg-1:0] cnt;

always_ff @(posedge clk)

if (start == 1) begin

shifted = unshifted; // Load a new item to shift ...

cnt = amt; // .. and initialize amount.

end else if (cnt > 0) begin

shifted = sf_out; // Shift by one more bit ..

cnt--; // .. and update count.

end

assign ready = cnt == 0; // Set ready to 1 when count is zero.

endmodulesyn-comb-26 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-26

Sequential Shifter

Inferred Hardware, No Optimization

clk

4'd1

start

re
a
d
y

amt

unshifted

s
h
if
te
d

cnt

shift_fixed

sf

sf_out

wid_lg=4
amt=1

shifted

unshifted

shift1'd1

shift_lt_seq

shifted

sh
if
te
d

cnt

cnt cn
tcn

t

ready

sh
if
te
d

start

cnt > 0

-

4'd0 =

>
4'd0

module shift_lt_seq
#(int wid_lg = 4, int wid = 1 << wid_lg)

(output logic [wid-1:0] shifted,

output uwire ready,

input [wid-1:0] unshifted,

input [wid_lg-1:0] amt,

input start, input clk);

uwire [wid-1:0] sf_out;

shift_fixed #(wid_lg,1) sf(sf_out,shifted,1’b1);

logic [wid_lg-1:0] cnt;

always_ff @(posedge clk)

if (start == 1) begin

shifted = unshifted;

cnt = amt;

end else if (cnt > 0) begin

shifted = sf_out;

cnt--;

end else begin shifted = shifted; cnt = cnt; end

assign ready = cnt == 0;

endmodule

syn-comb-27 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-27

Sequential Shifter

Inferred Hardware, No Optimization

clk

4'd1

start

re
a
d
y

amt

unshifted

s
h
if
te
d

cnt

shift_fixed

sf

sf_out

wid_lg=4

amt=1

shifted

unshifted

shift1'd1

shift_lt_seq

shifted

sh
if
te
d

cnt

cnt cn
tcn

t

ready

sh
if
te
d

start

cnt > 0

-

4'd0 =

>
4'd0

clk

start

amt

cnt

ready

0

2

1

7

2 0

93
unsh-
ifted

Cycle
0

Cycle
1

shifted 9384 18 36

Cycle
2

Cycle
3

1

22

23
24 24

25

syn-comb-28 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-28

Sequential Shifter

clk

4'd1

start

re
a
d
y

amt

unshifted

s
h
if
te
d

cnt

shift_fixed

sf

sf_out

wid_lg=4

amt=1

shifted

unshifted

shift1'd1

shift_lt_seq

shifted

sh
if
te
d

cnt

cnt cn
tcn

t

ready

sh
if
te
d

start

cnt > 0

-

4'd0 =

>
4'd0

clk

start

amt

cnt

ready

0

2

1

7

2 0

93
unsh-
ifted

Cycle
0

Cycle
1

shifted 9384 18 36

Cycle
2

Cycle
3

1

22

23
24 24

25

Pay Attention To

Setup delay: in-
puts to registers.

Operation delay:
register to regis-
ter.

Output delay: gen-
eration of the ready
signal.

syn-comb-29 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-29

Sequential Shifter

Streamlining and Optimization

Streamline hardware illustration to make it readable.

Include optimizations we hope synthesis program will make.

Optimization Opportunities

Use an enable for registers.

Shifter is just a bit renaming plus one zero.

The three operations on cnt, c > 0, c− 1, and c == 0 . . .

. . . can all be done by the same logic.

syn-comb-30 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-30

Sequential Shifter

clk

4'd1

start

re
a
d
y

amt

unshifted

s
h
if
te
d

cnt

shift_fixed

sf

sf_out

wid_lg=4
amt=1

shifted

unshifted

shift1'd1

shift_lt_seq

shifted

sh
if
te
d

cnt

cnt cn
tcn

t

ready

sh
if
te
d

start

cnt > 0

-

4'd0 =

>
4'd0

clk

start

re
a
d

y

amt

unshifted

s
h

if
te

d

cnt

shift_lt_seq wid_lg=4

cn
tcn

t

start

1'd0

decr
v

v-1

v=0

lsb

msb14:0 en

en

sf_out

syn-comb-31 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-31

Sequential Shifter

Sequential Shifter with Multiple Shifters

For example: Shift x by 9 bits.

clk

start

re
a
d
y

amt

unshifted

s
h
if
te
d

cnt

shift_fixed

sf1

shifted

u
n
sh

ifte
d

shift_lt_seq_d num_shifters=2

sh
if
te

d
cn

tcn
t

4'd1
-

wid_lg=4,

amt=1

shift

shift_fixed

sf4

shifted

u
n
sh

ifte
d

wid_lg=4,

amt=4

shift

cnt

4'd1
-

Magic
Cloudtm

Use a sequential shifter with 4-bit and 1-bit shifters.

Shift by 4-bits twice and by 1-bit once.

Features

The cnt register divided into multiple segments.

Fixed shifter may or may not shift.

syn-comb-32 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-32

Sequential Shifter

Performance Analysis and Design Optimization

Goal: Choose the best shifter for some larger design.

Remainder of multiple-shifter design covered in class.

syn-comb-33 EE 4755 Lecture Transparency. Formatted 11:20, 21 October 2020 from lsli-syn-seq-TeXize. syn-comb-33

	Sequential Logic Introduction
	Topics
	Differences Between Sequential and Combinational Logic
	Sequential Logic is Harder

	Inference of Registers
	Genus' Generic Flip-Flop
	Review of Inference and Technology Mapping
	Classroom Hardware Diagrams
	Edge-Triggered Flip-Flop Inference
	Inference Review
	Rules

	Coding Common Edge-Triggered Registers
	Simple
	With Enable

	Simple Example Circuits: Clocks
	Clock with Reset
	Clock with Threshold
	Version One
	Version One's Problems
	Faster Version
	Alternative Threshold Behavior

	Examples
	2018 Final Exam Problem 3
	2018 Midterm Exam Problem 2

	Sequential Shifter

