
LSU EE 4755 Homework 4 Solution Due: 28 October 2020
Paper copies will not be accepted. E-mail your solution to koppel@ece.lsu.edu. A single PDF

file is preferred.

This assignment refers to the solution to Homework 3. Pieces are shown below, the complete
solution can be found at https://www.ece.lsu.edu/koppel/v/2020/hw03-sol.v.html and in
the directory where the original assignment was copied from.

This solution was prepared 3 Nov 2020 at 16:23. A more detailed solution may be posted later.

Problem 1: Using the simple model compute the cost and delay of the nnAdd module from Home-
work 3 (shown below) for both sat=0 and sat=1. Do so after applying optimizations for constants.
Show the cost and delay in terms of w. Hint: See the simple model notes,
https://www.ece.lsu.edu/koppel/v/2020/lsli-simple-model.pdf, for the cost of a ripple adder.

• Show cost and delay in terms of w.

• Don’t forget to optimize for constant values.

• Assume that the adder will be implemented using a ripple circuit.

• Indicate both the delay of the least-significant bit of the sum and the delay of the most
significant bit of the sum. Answering this part correctly and applying it to the other problems
in this assignment will reveal something important about the impact of detecting overflow
and of the different methods of doing so.

module nnAdd #( int w = 5, sat = 0 )

( output uwire [w-1:0] so, input uwire [w-1:0] a, b );

uwire [w:0] s = a + b;

localparam logic [w-1:0] smax = ~w’(0);

assign so = sat && s[w] ? smax : s[w-1:0];

endmodule

Under the simple model the cost of a w-bit ripple adder is 9w uc, the delay of the least-significant bit is 4 ut and

the delay of the entire sum is 2(w + 1) ut.

For sat=0 the cost and delay are those of the w-bit adder described above: The cost of the sat=0 module is 9w uc ,

the delay of the LSB in the sat=0 module is 4 ut , and the delay of the MSB in the sat=0 module is 2(w + 1) ut .

When sat=1 the overflow logic must be taken into account too. That overflow logic synthesizes into a multi-

plexor with the select signal connected to s[w], the zero input connected to smax, and the one input connected to

the sum, s[w-1:0]. Because smax is a constant, the cost of the multiplexor is w and the added delay is 1. So,

the cost with sat=1 is 10w uc .

Because the multiplexor control signal is connected to the carry out of the adder (which would be bit position w of

the sum), all bits of the sum must wait for the MSB to arrive. That means that

the delay for all bits in the sat=1 module is [2(w + 1) + 1] ut . Sure, if all you cared about was the MSB this would

be no big deal. But it precludes getting a faster result with cascaded ripple adders.

There are more problems on the next pages.
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Problem 2: Using the simple model compute the cost and delay of the nnMult module from
Homework 3 for sat=1. Let w denote the setting of both wa and wb (they are to be set to the same
value), and let y denote the setting of wp. Solve this for y < 2w. Do so after applying optimizations
for constants.

Solve this using the following cost for an unsigned integer multiplier with two w-bit inputs
and a 2w-bit output: the cost using the simple model is 10w2 uc and the delay is [8w + 2] ut

for the complete product and [4i + 2] ut for bit position i. (The LSB is at position i = 0.)
(For more details on how those were derived see the comments after the Linear Multiplier in
https://www.ece.lsu.edu/koppel/v/2020/mult-seq.v.html.)

• Show the cost and delay in terms of w and y.

• Solve this for y < 2w.

• Don’t forget to optimize for constant values.

module nnMult #( int wa = 5, wb = 6, wp = wa + wb, sat = 0 )

( output uwire [wp-1:0] p, input uwire [wa-1:0] a, input uwire [wb-1:0] b );

localparam logic [wp-1:0] pmax = ~wp’(0);

localparam int wmx = wp > wa+wb ? wp : wa+wb;

uwire [wmx-wp:0] phi;

uwire [wp-1:0] plo;

assign {phi,plo} = a * b;

assign p = sat && wp < wa + wb && phi ? pmax : plo;

endmodule

In order to detect overflow the multiplier must compute a 2w-bit product. The problem statement helpfully gives

the cost of such hardware as 10w2 uc and the delay as [8w + 2] ut.

The only difference with the saturation logic is that it must examine 2w − y bits of the product. If any of those

2w − y bits are 1 then there is overflow. As in the previous problem there is a multiplexor with the result (product in

this case) at the zero input and pmax at the one input. The select signal is generated by ORing the 2w− y high bits of

the product together. The cost of the multiplexor is y uc, and the cost of the OR gate is [2w − y − 1] uc. Ordinarily

under the simple model the delay for an a-input OR gate would be dlg ae. But in this case we know the less significant

bits of the product arrive earlier than the more significant bits. To implement an a-input OR gate for such a situation

the OR gates can be connected linearly (rather than using a reduction tree). The MSB of the product would connect to

the last OR gate, and so the delay for checking whether any of the 2w − y bits is 1 would just be 1 ut.

The total cost of nnMult is [10w2 + y] uc and the delay of all bits is [8w + 2 + 1] ut .

There are more problems on the next pages.
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Problem 3: Using the simple model determine the cost and performance of module nn1xI (shown
on the next page) for the configurations described below. In all cases, let n denote the value of ni,
w denote the value of ww and wi (which are the same) and y denote the value of wo. Assume the
same hardware costs as the first two problems (modifying sizes and accounting for cascading where
appropriate).

(a) Find the cost (not delay in this part) for sat=0, tr=0, and y > 2w (that’s one configuration) and
for sat=0, tr=1, and y > 2w (that’s a second configuration). The two costs will be very similar.

• Show the costs in terms of n, w, and y.

Short answer: The cost for tr=0 and tr=1 is [10nw2 + 9(n− 1)y] uc (or lower, see detailed answer).

Detailed Answer: The y > 2w condition means that the multiplier will not overflow and that all bits of the

product are needed. (If y were smaller, say y = w, then some of the adders used to implement the multiplier would be

less than w bits and so would cost less.)

The nnMADD module consists of both an nnAdd and nnMult module. So the cost of the tr=0 solution will be

discussed in terms of the nnAdd and nnMult modules.

For both the tr=0 and tr=1 cases there will be n multipliers each having two w-bit inputs. The total cost of

these multipliers is 10nw2 uc.

For the tr=0 case there are n nnAdd units but the input to the first adder is zero (because s[-1]=0), so

after optimization there are n − 1 adders. When n is a power of 2, the number of adders for the tr=1 case is∑(lgn)−1
l=0 2l = n− 1. So the number of adders is the same in both cases.

The code instantiates y-bit adders, but good synthesis programs—and good students—will have noticed that not

all adders need y bits to avoid overflow. For the tr=0 case the i=1 adder has two 2w-bit inputs and so only needs to

compute a sum of 2w + 1 bits to avoid overflow. So if y > 2w + 1 the cost can be reduced by using a 2w + 1 bit

adder rather than a y bit adder. Call this a trim optimization.

First, compute the cost without the trim optimization. The cost of each of these adders is 9y uc. The total cost of

the adders for both tr=0 and tr=1 is 9y(n− 1) uc.

The total cost of the nn1xI module without the trim optimization is [10nw2 + 9(n− 1)y] uc.

The cost with the trim optimization will be computed for tr=1. Let l indicate a level in the recursion tree with

l corresponding to a level in which n = 2l. The base case is l = 0, for which there are no adders. For l > 0
there are n/2l adders each need 2w + l bits, so the cost at level l is

[
n
2l

9(2w + l)
]

uc. The total adder cost is∑(lgn)
l=1

[
n
2l

9(2w + l)
]

uc = [9(2w + 2)(n− 1)− 9 lg n] uc.

(b) Find the delay (not cost in this part) for sat=0, tr=0, and y > 2w (that’s one configuration)
and for sat=0, tr=1, and y > 2w (that’s a second configuration). The two delays will be very
different.

• Show the delays in terms of n, w, and y.

• When computing the total delay don’t forget to take into account the time that inputs arrive
at each port, especially for the multiplier.

• When computing total delay account for cascading of ripple units.

At launch time (t = 0) inputs are available at all of the multipliers. As stated in the problem, bit i is correct at

time [4i + 2] ut.

First consider tr=0. For i=1 (the i from the generate loop) the two inputs to the adder are from multipliers

(because for i=0 there is no need for an adder), and so bit i arrives at 4i + 2. Because the inputs to the adder aren’t

all available at the same time we can’t rely on the ripple adder formula for when bit i of the sum is available. We know

that each BFA requires 4 units of time to compute both the sum and carry output from its inputs when those inputs are

available at the same time. Therefore, bit i of that first adder is available at 4i + 2 + 4 = 4i + 6. Accounting for
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n− 1 adders, bit i is available at 4i + 2 + 4(n− 1) = 4(i + n)− 2 and the most-significant bit, y − 1 is available

at [4(y − 1) + 4n− 2] ut = [4(y + n)− 6] ut.

So, the delay for the LSB when tr=0 is [4n− 2] ut and the delay for the MSB when tr=0 is [4(y + n)− 6] ut .

For tr=1 the computation is similar, except that the critical path passes through lg n adders rather than n − 1
adders. Therefore the delay for bit i is [4i + 2 + 4 lg n] ut and the MSB is available at [4(y − 1) + 2 + 4 lg n] ut.

So, the delay for the LSB when tr=1 is [2 + 4 lg n] ut and the

delay for the MSB when tr=1 is [4(y − 1) + 2 + 4 lg n] ut .

(c) Find the delay for sat=1, tr=0, and y > 2w (that’s one configuration) and for sat=1, tr=1, and
y > 2w (that’s a second configuration). The two delays should be very different from each other
and from the delays from the previous problem.

Since y > 2w there will be no saturation penalty for the multiplier. Therefore bit i of the product is stable at

4i + 2.

Because of the multiplexor, the delay though one saturating adder (an nnAdd module with sat=1) is the same for

all bits. That delay is [2(y + 1) + 1] ut.

First consider tr=0. For i=1 (the genvar, not a bit position) bit i of the sum (before saturation, and accounting

for the multiplier delay) is ready at time 4i+ 2 + 4 = 4i+ 6. The MSB, y− 1, is available at 4y + 2, and the output

of the mux is available at [4y + 3] ut. The delay computation is different for the remaining n− 2 adders. Consider the

i=2 (the genvar) adder. One input is from the i=1 adder and the other is from a multiplier. The input from the i=1

adder arrives at [4y + 3] ut (which we just calculated). By then all bits from the multiplier will have arrived. So the

time at which the LSB can be computed is 4y + 3, there is no early start. The sum will be computed 2(y + 1) later, or

at a total delay of [4y + 3 + 2(y + 1) + 1] ut = [6y + 5 + 1] ut including the mux. The complete sum is available

at [4y + 3 + (n− 2)(2(y + 1) + 1)] ut or [n(2y + 3)− 3] ut.

Notice that with without saturation the time is O(n+y) and that with saturation the time is O(ny), much worse!

The computation is similar for the tr=1 case. The critical path starts with a multiply, add, saturate (same as for

tr=0) with a delay of [4y+ 3] ut. After that the critical path passed through (lg n)−1 additional adders, so the total

time is [4y + 3 + (lg n− 1)(2(y + 1) + 1)] ut or [(2y + 3) lg n+ 2y] ut. Here the time is order O(y lg n) which

is better than O(ny) but not nearly as good as O(n + y).
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module nn1xI #( int wo = 10, wi = 4, ww = 5, ni = 2, tr = 0, sat = 0 )

( output uwire [wo-1:0] ao,

input uwire [wi-1:0] ai[ni],

input uwire [ww-1:0] wht[ni] );

if ( tr ) begin

if ( ni == 1 ) begin

nnMult #(wi,ww,wo,sat) mult(ao, ai[0], wht[0] );

end else begin

localparam int nlo = ni / 2;

localparam int nhi = ni - nlo;

uwire [wo-1:0] aolo, aohi;

nn1xI #(wo,wi,ww,nlo,1,sat) nnlo(aolo, ai[0:nlo-1], wht[0:nlo-1]);

nn1xI #(wo,wi,ww,nhi,1,sat) nnhi(aohi, ai[nlo:ni-1], wht[nlo:ni-1]);

nnAdd #(wo,sat) add(ao,aolo,aohi);

end

end else begin

uwire [wo-1:0] s[ni-1:-1];

assign s[-1] = 0;

assign ao = s[ni-1];

for ( genvar i = 0; i < ni; i++ )

nnMADD #(ww,wi,wo,sat) madd( s[i], wht[i], ai[i], s[i-1] );

end

endmodule

module nnMADD #( int wa = 10, wb = 5, ws = wa + wb, sat = 0 )

( output uwire [ws-1:0] so,

input uwire [wa-1:0] a, input uwire [wb-1:0] b, input uwire [ws-1:0] si);

uwire [ws-1:0] p;

nnMult #(wa,wb,ws,sat) mu(p, a, b);

nnAdd #(ws,sat) ad(so, si, p);

endmodule

There are even more problems on the next pages.
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Problem 4: Consider module nnOxI instantiated with no=1, tr=0, for both sat=1 and sat=2. (A
slightly simplified version appears below.) Let n denote the value of ni, w denote the value of wi
and ww (which are the same), and let y denote the value of wo.

Assume that 2w < y < dlg n(2w− 1)2e. That is, y is large enough so that the multipliers can’t
overflow but not so large that the adders can’t overflow.

(a) Compute the cost and delay for both the sat=1 and sat=2 cases. For sat=1 just re-use answers
from the previous problems.

• Show answers in terms of n, w, and y.

• Don’t forget that the value of wo in the nn1xI instantiations depends upon sat.

When sat=1 and no=1 the hardware for nnOxI is the same as that of nn1xI.

The cost of the sat=0 instantiation based on the answer to Problem 3 is [10nw2 + 9(n − 1)y] uc. The cost

of the saturation hardware is that of n − 1 2-input, y-bit multiplexors in which one input is a constant. The cost

of these is [(n − 1)y] uc. So the total cost for nnOxI with sat=1 is [10nw2 + 9(n − 1)y + (n − 1)y] uc =
[10nw2 + 10(n− 1)y] uc.

The delay has been computed in Problem 3, it is [n(2y + 3)− 3] ut.

When sat=2 the nn1xI modules are instantiated with sat=0, and so their cost and delay are [10nw2 +
9(n − 1)r] uc and [4(r + n) − 6] ut where r is the value of wr for which they were instantiated. Note that r =
dlg n(2w − 1)2e.

Module nnOxI checks for saturation by checking whether the high r−y bits of ar are non-zero. That can be done

using an OR gate, with a cost of [r− y − 1] uc. If the OR used a tree reduction the delay would be lg(r− y) ut, but

if we expect bit i+ 1 to arrive at least one ut later than bit i a linear connection of OR gates would be faster, and have

a net delay of just 1. So the total delay is [4(r + n)− 6 + 1] ut.

The total cost includes a 2-input, y-bit multiplexor and the (r − y)-input OR gate. One input to the mux is

constant, so its cost is y. The total cost with this hardware is [10nw2 + 9(n − 1)r + y + (r − y − 1)] uc or

[10nw2 + 9(n− 1)r + r − 1] uc where r = dlg n(2w − 1)2e.
(b) In terms of the costs computed above is sat=2 always better, always worse, or sometimes better
than sat=1? Be specific of course.

Recall that for sat=1 the cost is C(1, n, w, y) = [10nw2+10(n−1)y] uc and for sat=2 the is c(2, n, w, y) =
[10nw2 + 9(n− 1)r + r − 1] uc.

To solve this compute C(1, n, w, y) − C(2, n, w, y). If the result is always positive then sat=2 always costs

less, etc.

C(1, n, w, y)− C(2, n, w, y) = 10(n− 1)y − 9(n− 1)r − r + 1
Recall r = dlg n(2w−1)2e and that the assumption is that 2w < y < r. We can approximate r ≈ 2w+lg n.

The cost benefit for sat=2 is less favorable larger when y is smaller. Consider one minus the smallest value of y,

which is y = 2w Then C(1, n, w, y)−C(2, n, w, y) = 10(n−1)2w−9(n−1)(2w+lg n)−(2w+lg n)+1 =
(n − 1)2w − 9(n − 1) lg n − 2w − lg n + 1 ≈ (n − 1)2w − 9(n − 1) lg n. This expression is positive when

w > 2.25 lg n. Generally when w is large sat=2 works better, when n is large sat=1 works better.

module nnOxI #( int no = 4, ni = 2, wo = 10, wi = 4, ww = 5, tr = 0, sat = 0 )

( output uwire [wo-1:0] ao[no],

input uwire [wi-1:0] ai[ni], input uwire [ww-1:0] wht[no][ni] );

// Compute number of bits to represent largest possible value that

// can appear on an ao.

localparam int wr = $clog2( ( 2**wi - 1 ) * ( 2**ww - 1 ) * ni );

if ( sat < 2 ) begin
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for ( genvar i = 0; i < no; i++ )

nn1xI #(wo,wi,ww,ni,tr,sat) row( ao[i], ai, wht[i] );

end else begin

for ( genvar i = 0; i < no; i++ ) begin

uwire [wr-1:0] ar;

nn1xI #(wr,wi,ww,ni,tr,0) row( ar, ai, wht[i] );

assign ao[i] = ar[wr-1:wo] ? ~wo’(0) : ar[wo-1:0];

end

end

endmodule

Problem 5: Zero points will be given for the answer to this question, but please try your very best
to answer it. Suggest a method of saturating ao that avoids the extra wo bits needed (for nn1xI)
when sat=2 but also avoids the critical-path-killing saturation logic used when sat=1. Your solution
could add extra ports to all modules except nnOxI. A correct solution would detect overflow under
the same conditions as nnOxI does with sat=1.
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