
LSU EE 4755 Homework 4 Due: 28 October 2020
Paper copies will not be accepted. E-mail your solution to koppel@ece.lsu.edu. A single PDF

file is preferred.

This assignment refers to the solution to Homework 3. Pieces are shown below, the complete
solution can be found at https://www.ece.lsu.edu/koppel/v/2020/hw03-sol.v.html and in
the directory where the original assignment was copied from.

Problem 1: Using the simple model compute the cost and delay of the nnAdd module from Home-
work 3 (shown below) for both sat=0 and sat=1. Do so after applying optimizations for constants.
Show the cost and delay in terms of w. Hint: See the simple model notes,
https://www.ece.lsu.edu/koppel/v/2020/lsli-simple-model.pdf, for the cost of a ripple adder.

• Show cost and delay in terms of w.

• Don’t forget to optimize for constant values.

• Assume that the adder will be implemented using a ripple circuit.

• Indicate both the delay of the least-significant bit of the sum and the delay of the most
significant bit of the sum. Answering this part correctly and applying it to the other problems
in this assignment will reveal something important about the impact of detecting overflow
and of the different methods of doing so.

module nnAdd #(int w = 5, sat = 0)

(output uwire [w-1:0] so, input uwire [w-1:0] a, b);

uwire [w:0] s = a + b;

localparam logic [w-1:0] smax = ~w’(0);

assign so = sat && s[w] ? smax : s[w-1:0];

endmodule

There are more problems on the next pages.

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/2020/hw03-sol.v.html
https://www.ece.lsu.edu/koppel/v/2020/lsli-simple-model.pdf

Problem 2: Using the simple model compute the cost and delay of the nnMult module from
Homework 3 for sat=1. Let w denote the setting of both wa and wb (they are to be set to the same
value), and let y denote the setting of wp. Solve this for y < 2w. Do so after applying optimizations
for constants.

Solve this using the following cost for an unsigned integer multiplier with two w-bit inputs
and a 2w-bit output: the cost using the simple model is 10w2 uc and the delay is [8w + 2] ut

for the complete product and [4i + 2] ut for bit position i. (The LSB is at position i = 0.)
(For more details on how those were derived see the comments after the Linear Multiplier in
https://www.ece.lsu.edu/koppel/v/2020/mult-seq.v.html.)

• Show the cost and delay in terms of w and y.

• Solve this for y < 2w.

• Don’t forget to optimize for constant values.

module nnMult #(int wa = 5, wb = 6, wp = wa + wb, sat = 0)

(output uwire [wp-1:0] p, input uwire [wa-1:0] a, input uwire [wb-1:0] b);

localparam logic [wp-1:0] pmax = ~wp’(0);

localparam int wmx = wp > wa+wb ? wp : wa+wb;

uwire [wmx-wp:0] phi;

uwire [wp-1:0] plo;

assign {phi,plo} = a * b;

assign p = sat && wp < wa + wb && phi ? pmax : plo;

endmodule

There are more problems on the next pages.

2

https://www.ece.lsu.edu/koppel/v/2020/mult-seq.v.html

Problem 3: Using the simple model determine the cost and performance of module nn1xI (shown
on the next page) for the configurations described below. In all cases, let n denote the value of ni,
w denote the value of ww and wi (which are the same) and y denote the value of wo. Assume the
same hardware costs as the first two problems (modifying sizes and accounting for cascading where
appropriate).

(a) Find the cost (not delay in this part) for sat=0, tr=0, and y > 2w (that’s one configuration) and
for sat=0, tr=1, and y > 2w (that’s a second configuration). The two costs will be very similar.

• Show the costs in terms of n, w, and y.

(b) Find the delay (not cost in this part) for sat=0, tr=0, and y > 2w (that’s one configuration)
and for sat=0, tr=1, and y > 2w (that’s a second configuration). The two delays will be very
different.

• Show the delays in terms of n, w, and y.

• When computing the total delay don’t forget to take into account the time that inputs arrive
at each port, especially for the multiplier.

• When computing total delay account for cascading of ripple units.

(c) Find the delay for sat=1, tr=0, and y > 2w (that’s one configuration) and for sat=1, tr=1, and
y > 2w (that’s a second configuration). The two delays should be very different from each other
and from the delays from the previous problem.

3

module nn1xI #(int wo = 10, wi = 4, ww = 5, ni = 2, tr = 0, sat = 0)

(output uwire [wo-1:0] ao,

input uwire [wi-1:0] ai[ni],

input uwire [ww-1:0] wht[ni]);

if (tr) begin

if (ni == 1) begin

nnMult #(wi,ww,wo,sat) mult(ao, ai[0], wht[0]);

end else begin

localparam int nlo = ni / 2;

localparam int nhi = ni - nlo;

uwire [wo-1:0] aolo, aohi;

nn1xI #(wo,wi,ww,nlo,1,sat) nnlo(aolo, ai[0:nlo-1], wht[0:nlo-1]);

nn1xI #(wo,wi,ww,nhi,1,sat) nnhi(aohi, ai[nlo:ni-1], wht[nlo:ni-1]);

nnAdd #(wo,sat) add(ao,aolo,aohi);

end

end else begin

uwire [wo-1:0] s[ni-1:-1];

assign s[-1] = 0;

assign ao = s[ni-1];

for (genvar i = 0; i < ni; i++)

nnMADD #(ww,wi,wo,sat) madd(s[i], wht[i], ai[i], s[i-1]);

end

endmodule

module nnMADD #(int wa = 10, wb = 5, ws = wa + wb, sat = 0)

(output uwire [ws-1:0] so,

input uwire [wa-1:0] a, input uwire [wb-1:0] b, input uwire [ws-1:0] si);

uwire [ws-1:0] p;

nnMult #(wa,wb,ws,sat) mu(p, a, b);

nnAdd #(ws,sat) ad(so, si, p);

endmodule

There are even more problems on the next pages.

4

Problem 4: Consider module nnOxI instantiated with no=1, tr=0, for both sat=1 and sat=2. (A
slightly simplified version appears below.) Let n denote the value of ni, w denote the value of wi
and ww (which are the same), and let y denote the value of wo.

Assume that 2w < y < dlg n(2w− 1)2e. That is, y is large enough so that the multipliers can’t
overflow but not so large that the adders can’t overflow.

(a) Compute the cost and delay for both the sat=1 and sat=2 cases. For sat=1 just re-use answers
from the previous problems.

• Show answers in terms of n, w, and y.

• Don’t forget that the value of wo in the nn1xI instantiations depends upon sat.

(b) In terms of the costs computed above is sat=2 always better, always worse, or sometimes better
than sat=1? Be specific of course.

module nnOxI #(int no = 4, ni = 2, wo = 10, wi = 4, ww = 5, tr = 0, sat = 0)

(output uwire [wo-1:0] ao[no],

input uwire [wi-1:0] ai[ni], input uwire [ww-1:0] wht[no][ni]);

// Compute number of bits to represent largest possible value that

// can appear on an ao.

localparam int wr = $clog2((2**wi - 1) * (2**ww - 1) * ni);

if (sat < 2) begin

for (genvar i = 0; i < no; i++)

nn1xI #(wo,wi,ww,ni,tr,sat) row(ao[i], ai, wht[i]);

end else begin

for (genvar i = 0; i < no; i++) begin

uwire [wr-1:0] ar;

nn1xI #(wr,wi,ww,ni,tr,0) row(ar, ai, wht[i]);

assign ao[i] = ar[wr-1:wo] ? ~wo’(0) : ar[wo-1:0];

end

end

endmodule

Problem 5: Zero points will be given for the answer to this question, but please try your very best
to answer it. Suggest a method of saturating ao that avoids the extra wo bits needed (for nn1xI)
when sat=2 but also avoids the critical-path-killing saturation logic used when sat=1. Your solution
could add extra ports to all modules except nnOxI. A correct solution would detect overflow under
the same conditions as nnOxI does with sat=1.

5

	Problem 1
	Problem 2
	Problem 3
	Part char 97
	Part char 98
	Part char 99

	Problem 4
	Part char 97
	Part char 98

	Problem 5

