
LSU EE 4755 Homework 3 Due: 13 October 2020

The deadline has been extended by one day, to 13 October (late at night) due to power outages
caused by Hurricane Delta.

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete Verilog
for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2020/hw03.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account (if you haven’t already), copy the assignment, and run the Verilog simulator and
synthesis program on the unmodified homework file, hw03.v.

Homework Overview and Neural Network Background
The goal of Homework 2 was to describe a 4 × 4 matrix/vector multiply circuit hierarchically.
That goal is generalized here where an ni × no matrix is multiplied by an ni-element vector. In
Homework 2 each ao[o] was computed by a tree connection of multipliers. Here both linear and
tree connections will be tried. Also, the module in this assignment will optionally do something
about overflow.

The modules in this assignment and in Homework 2 could be used any place where matrix/
vector multiplication is needed, but they were designed with a particular application in mind that
some students might have guessed from the names used: artificial neural networks. The nn prefix
is for neural network. The output and one input name starts with a, that’s for activation, which
can be though of as a neuron. The weights model connections between neurons.

A completely connected neural network layer performs a matrix vector multiplication. The
multiply/add operation needed to compute that is also an important operation for other compute-
intensive workloads, including graphics and many forms scientific computation. General-purpose
CPUs and GPUs were designed in part to perform multiply/add operations efficiently—on some
workloads, including graphics and scientific computation.

One thing that sets neural network (a technique for machine-learning [ML]) workloads apart
is operand precision. Graphics uses 32-bit values for coordinates, many scientific computation uses
64-bit values. Lower precision would be less effective. But machine learning can get by with less
precision, and with different precision for the weights than the activations. Lower precision reduces
the amount of energy needed for computation (which is often a limiter), and the amount of data
that needs to be moved. This is especially important for weights in fully-connected layers.

The modules in this assignment allow for different precision for inputs, outputs, and weights.
When the precision of the output is low there is a danger of overflow. That is often handled by
saturating a value at the maximum representable quantity.

Reference Module, nnOxIbe
A goal of this assignment is to write a Verilog description of a module performing the same com-
putation as a reference module, nnOxIbe. Module nnOxIbe has two inputs, an ni-element vector
of wi-bit integers, ai, and an no × ni matrix of ww-bit integers, wht; the module has one output,
an no-element vector of wo-bit integers, ao, where ni, no, wi, ww, and wo are the values of the
similarly named module parameters. All integers are unsigned. Output ao is set to the product of
matrix wht and column vector ai with overflow handled as described further below.

Most will find it easiest to inspect the code in nnOxIbe (below) to resolve any remaining

certainty about what this module does. For the others let r(p) =
∑ni−1

q=0 Hp,qai(q), where Hp,q

is the equivalent of the Verilog wht[p][q], and ai(q) is the equivalent of ai[q]. Then either

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2020/hw03.v.html
https://www.ece.lsu.edu/koppel/v/proc.html


ao(p) = min{ r(p), 2wo − 1 } or ao(p) is set to the low wo bits of r(p), depending on the value of
parameter sat.

Module nnOxIbe initially computes a 32-bit precision value (see variable acc) for each ao[i].
If sat=0 then ao[i] is assigned the low wo bits of this value. If sat!=0 then ao[i] is set to the
minimum of acc and 2wo−1. As some may have guessed, sat is short for saturating arithmetic. (In
saturating arithmetic an overflow is replaced by the maximum representable value. For example,
for 4-bit unsigned integers and a saturating add: 112 + 11102 = 11112.)

module nnOxIbe
#( int no = 4, ni = 4, wo = 10, wi = 4, ww = 5, sat = 0 )

( output logic [wo-1:0] ao[no],

input uwire [wi-1:0] ai[ni], input uwire [ww-1:0] wht[no][ni] );

// The maximum possible value of each element of ao.

localparam logic [wo-1:0] smax = ~wo’(0);

always_comb

for ( int o = 0; o < no; o++ ) begin

automatic int unsigned acc = 0;

for ( int i=0; i<ni; i++ ) acc += ai[i] * wht[o][i];

// If sat is non-zero replace a value that would overflow

// ao[o] with the maximum value that ao[o] can hold.

ao[o] = sat && acc > smax ? smax : acc;

end

endmodule

Testbench
(This part is best read after looking at Problems 1 and 2.) The testbench will instantiate sixteen (as
of this writing) configurations of nnOxI. For each configuration, three sets of tests are performed,
similar to the ones performed for Homework 2. A grand total of errors is printed at the end, such as
Total number of errors: 660. Above that the number of errors are grouped in various ways.
For example:

All Sat 0 220 errors.

All Sat 1 220 errors.

All Sat 2 220 errors.

Linear 330 errors.

Linear Sat 0 110 errors.

Linear Sat 1 110 errors.

Linear Sat 2 110 errors.

Tree 330 errors.

Tree Sat 0 110 errors.

Tree Sat 1 110 errors.

Tree Sat 2 110 errors.

Total number of errors: 660

The line reading Linear 330 errors shows the total number of errors of all configurations for
which tr=0. The line Linear Sat 0 110 errors. shows the number of errors on linear modules
with sat=0.

2



Further up specific inputs and incorrect outputs are shown. For example:

** Starting tests for no=3, ni=5, wo=15, wi=9, ww=8, sat=2

Testing module Linear

** Starting test set n12 (1 outputs, 2 inputs) for Linear **

Error test # 0, output 0: z != 32767 (correct)

Error test # 1, output 0: z != 32767 (correct)

Error test # 2, output 0: z != 26759 (correct)

Done with 10 n12 tests on Linear: 10 errors found.

In the example above output ao[0] was z (unconnected) but should have been 32767.
In test set n12 the inputs and weights are chosen so that the only non-zero output should be

ao[0] and so that only ai[0] and ai[1] are non-zero. In set n1* all inputs can have non-zero
values but weights are chosen so that only ao[0] is non-zero. In test set n** all inputs can be
non-zero and all outputs can be non-zero.

Problem 1: Complete module nnOxI so that it produces the same output as nnOxIbe and does
so using generate statements to either describe a linear or recursive module as described below.

Module nnOxI is to be the starting point in all cases. It has the same parameters as nnOxIbe,
plus it also has a parameter tr. The solution to this problem requires modification to nnOxI and
to module nn1xI. Both are in hw03.v.

Multiplication and addition of values should be performed by instances of the provided arith-
metic modules, nnAdd, nnMult, and nnMADD (multiply/add). These modules can perform saturating
arithmetic.

Module nnOxI should instantiate no (that’s a number) nn1xI modules. Each nn1xI instance
should compute one output of nnOxI. The tr parameter in nnOxI indicates whether each nn1xI

should compute its output using a linear arrangement of modules or a tree arrangement.
For the linear arrangement nn1xI should use a generate loop to instantiate nnMADD modules.

The critical path (without optimization) should be O(ni) multiply/add operations. For the tree
arrangement nn1xI should either instantiate two copies of itself or for the base case, the arithmetic
modules.

For an example of a module describing a linear arrangement of hardware see min_n in the gener-
ate/elaborate lecture code, https://www.ece.lsu.edu/koppel/v/2020/l025-gen-elab.v.html.
For an example of a module describing a tree arrangement of hardware see min_t in the lecture
code.

Be sure to specify the appropriate parameters when instantiating modules, including the sat

parameter.

• Do not make ports wider than they need to be.

• Make sure that the modules pass all tests.

• Make sure that the module is synthesizable. (Use command genus -files syn.tcl to
synthesize.) The area should be > 0.

• Code should be clearly written.

Problem 2: Module nnOxIbe honors the sat parameter after it has computed a 32-bit ao[o]

value. (That is, it first computes a 32-bit result, then it checks if it’s too large.) That’s fine for
software, but it would be wasteful for our hardware because we’d need to provide 32-bit precision

3

https://www.ece.lsu.edu/koppel/v/2020/l025-gen-elab.v.html


hardware for all arithmetic. Or is it really that wasteful? First, we don’t necessarily need 32 bits.
The maximum value of ao[o] depends on wi, ww, and ni, so we only need enough bits to hold that.
Also, the saturating arithmetic modules may be inflating cost for two reasons: the cost of detecting
and handling saturation, and the fact that algebraic optimizations are impeded when saturation is
performed. So, it may be less expensive to compute a value for ao[o] to a precision greater than
wo, and then just saturate that value. This way saturation is performed once per output, rather
than ni times.

Modify your modules so that when sat=2 saturation is performed as described above.

4


	Problem 0
	Problem 1
	Problem 2

