
LSU EE 4755 Homework 1 Solution Due: 16 September 2020
Paper copies will not be accepted. E-mail your solution to koppel@ece.lsu.edu. A single PDF

file is preferred.

Problem 1: In the Module-Port-versus-Module-Parameter section of lecture code
https://www.ece.lsu.edu/koppel/v/2020/l005-review.v.html there are several module de-
signs for computing c1x + c2y, where c1 and c2 are constants and x and y are module inputs. The
point of that section and of the modules was to illustrate the SystemVerilog differences between
module parameters and ports (syntax issues, for example) and also how they relate to the hardware
being modeled.

(a) Draw a diagram of module c1x_c2y_good, shown below, using its default parameter values
(which are different than the ones in the lecture code). Show the contents of all instantiated
modules and appropriately label ports and wires. (See 2016 Homework 1 Problem 3 for a dia-
gram showing instantiated modules. Also see module arb_exp and the illustration that follows in
https://www.ece.lsu.edu/koppel/v/2020/l015-syn-comb-str.v.html.)

• Use the default parameter values of the module c1x_c2y_good shown below.

• Use the appropriate parameter values for the mult_by_c instances. Hint: appropriate is not
a synonym for default.

• Show the ports for all modules.

• Show the number of bits in each wire.

• Label wires with the symbols used below (such as p1 and prod) and take care to place
the label on the correct side of a module boundary. (In the two_pie illustration from
https://www.ece.lsu.edu/koppel/v/2020/l005-review.v.html look at the wire carrying
labels x, i1, and a.).

Continued on next page.
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module mult_by_c
#( int w = 8, int c = 16, int w2 = w+$clog2(c) )

( output uwire signed [w2-1:0] prod, input uwire signed [w-1:0] a );

assign prod = a * c;

endmodule

module c1x_c2y_good
#( int c1 = 4, int c2 = 7, int w = 15,

int w2 = w + $clog2(c1) + $clog2(c2) )

( output logic signed [w2-1:0] s, input uwire signed [w-1:0] x, y );

uwire [w2-1:0] p1, p2;

mult_by_c #(w,c1,w2) m1(p1,x);
mult_by_c #(w,c2,w2) m2(p2,y);

assign s = p1 + p2;

endmodule

Solution appears below. Notice that parameters are not shown as module inputs. For example, c1 is not shown as

an input to m1.
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(b) Draw a diagram of module c1x_c2y_okay below using its default parameter values (which are
different than the defaults used in the lecture code). Show the same details, such as ports, as was
requested for the previous part.

module mult
#( int w = 8, int w2 = 2 * w )

( output uwire signed [w2-1:0] prod, input uwire signed [w-1:0] a, b );

assign prod = a * b;

endmodule

module c1x_c2y_okay
#( int c1 = 4, int c2 = 7, int w = 15,

int w2 = w + $clog2(c1) + $clog2(c2) )

( output logic signed [w2-1:0] s, input uwire signed [w-1:0] x, y );

uwire [w2-1:0] p1, p2;

uwire [w:1] C1 = c1, C2 = c2; // Convert constants to desired size.

mult #(w,w2) m1(p1, x, C1);

mult #(w,w2) m2(p2, y, C2);

assign s = p1 + p2;

endmodule

Solution appears below. Here, C1 and C2 are inputs to m1 and m2. A lazy synthesis program, or less judgmentally,

a synthesis program set to optimize at a low effort level might not take advantage of the fact that in m1 the b input is 4.

That would result in much more expensive hardware.
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Problem 2: Synthesis programs optimize a design to minimize cost while meeting timing con-
straints. The illustration below for the mult and mult_by_c modules (used in the slides) show how
the multiplier can be simplified when one of the inputs is a convenient constant, 1.

Show how the c1x_c2y_good module from the first problem can be optimized based on the
default c1=4 and c2=7 values. To do so show the multiplier replaced by much simpler hardware,
such as adder(s). A correct solution uses only one adder for both multipliers, bit relabeling, plus
the adder used to combine p1 and p2.

Note: As originally assigned, and until Tuesday, 15 September 2020 at about 16:15, the problem
stated that a correct solution uses only one adder, implying but not specifically stating that the one
adder was the replacement for the multipliers and that there would also be and adder computing
p1+p2, for a total of two adders.
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Two solutions appear below. The first is easier to understand, but uses two adders for m2. The second uses one

adder for m2.

Both solutions take advantage of the fact that multiplication by a power of 2, such as 4, can be achieved by left-

shifting. To compute 4x the value of x is left-shifted by two positions. The hardware for achieving that is trivial: relabel

bit position i to i + 2 and set bits at positions 0 and 1 to the constant 0. Both solutions do this in m1. Make sure that

the notation for re-labeling bits used in m1 is understood.

The solution below computes 7y using two adders: 4y + 2y + y = 7y.

Both solutions use adders that have unequal port sizes. For example in the first solution the adder computing s has

one 17-bit input and one 20-bit input. That’s not an unreasonable assumption to make.
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The solution using one adder for m2 appears below. Recall that m2 computes 7y. That can be done with one adder

by computing 8y + (−y) = 7y. But to compute a 2’s complement representation of −y one needs to negate each bit

and then add 1. Negating each bit is easy. A wasteful solution would use an adder just to compute (−y−1)+1. There’s

no need for that here, instead the solution computes (8y + 1) + (−y− 1) = 7y. The quantity 8y + 1 is obtained by

left-shifting by 3 bits and then putting a 1 in the least-significant bit position. Negating the bits of 2’s complement number

y results in −y − 1, which is what we need. Notice that the hardware computing −y − 1 produces an 18-bit quantity

by sign-extending the 15-bit quantity. The need to do sign extension in the diagram below could have been eliminated by

using an adder with an 18- and 15-bit input. The adder would do the sign-extension internally.
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