
LSU EE 4755 Homework 1 Due: 16 September 2020
Paper copies will not be accepted. E-mail your solution to koppel@ece.lsu.edu. A single PDF

file is preferred.

Problem 1: In the Module-Port-versus-Module-Parameter section of lecture code
https://www.ece.lsu.edu/koppel/v/2020/l005-review.v.html there are several module de-
signs for computing c1x + c2y, where c1 and c2 are constants and x and y are module inputs. The
point of that section and of the modules was to illustrate the SystemVerilog differences between
module parameters and ports (syntax issues, for example) and also how they relate to the hardware
being modeled.

(a) Draw a diagram of module c1x_c2y_good, shown below, using its default parameter values
(which are different than the ones in the lecture code). Show the contents of all instantiated
modules and appropriately label ports and wires. (See 2016 Homework 1 Problem 3 for a dia-
gram showing instantiated modules. Also see module arb_exp and the illustration that follows in
https://www.ece.lsu.edu/koppel/v/2020/l015-syn-comb-str.v.html.)

• Use the default parameter values of the module c1x_c2y_good shown below.

• Use the appropriate parameter values for the mult_by_c instances. Hint: appropriate is not
a synonym for default.

• Show the ports for all modules.

• Show the number of bits in each wire.

• Label wires with the symbols used below (such as p1 and prod) and take care to place
the label on the correct side of a module boundary. (In the two_pie illustration from
https://www.ece.lsu.edu/koppel/v/2020/l005-review.v.html look at the wire carrying
labels x, i1, and a.).

module mult_by_c
#( int w = 8, int c = 16, int w2 = w+$clog2(c) )

( output uwire signed [w2-1:0] prod, input uwire signed [w-1:0] a );

assign prod = a * c;

endmodule

module c1x_c2y_good
#( int c1 = 4, int c2 = 7, int w = 15,

int w2 = w + $clog2(c1) + $clog2(c2) )

( output logic signed [w2-1:0] s, input uwire signed [w-1:0] x, y );

uwire [w2-1:0] p1, p2;

mult_by_c #(w,c1,w2) m1(p1,x);
mult_by_c #(w,c2,w2) m2(p2,y);

assign s = p1 + p2;

endmodule

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/2020/l005-review.v.html
https://www.ece.lsu.edu/koppel/v/2020/l015-syn-comb-str.v.html
https://www.ece.lsu.edu/koppel/v/2020/l005-review.v.html


(b) Draw a diagram of module c1x_c2y_okay below using its default parameter values (which are
different than the defaults used in the lecture code). Show the same details, such as ports, as was
requested for the previous part.

module mult
#( int w = 8, int w2 = 2 * w )

( output uwire signed [w2-1:0] prod, input uwire signed [w-1:0] a, b );

assign prod = a * b;

endmodule

module c1x_c2y_okay
#( int c1 = 4, int c2 = 7, int w = 15,

int w2 = w + $clog2(c1) + $clog2(c2) )

( output logic signed [w2-1:0] s, input uwire signed [w-1:0] x, y );

uwire [w2-1:0] p1, p2;

uwire [w:1] C1 = c1, C2 = c2; // Convert constants to desired size.

mult #(w,w2) m1(p1, x, C1);

mult #(w,w2) m2(p2, y, C2);

assign s = p1 + p2;

endmodule

2



Problem 2: Synthesis programs optimize a design to minimize cost while meeting timing con-
straints. The illustration below for the mult and mult_by_c modules (used in the slides) show how
the multiplier can be simplified when one of the inputs is a convenient constant, 1.

Show how the c1x_c2y_good module from the first problem can be optimized based on the
default c1=4 and c2=7 values. To do so show the multiplier replaced by much simpler hardware,
such as adder(s). A correct solution uses only one adder for both multipliers, bit relabeling, plus
the adder used to combine p1 and p2.

Note: As originally assigned, and until Tuesday, 15 September 2020 at about 16:15, the problem
stated that a correct solution uses only one adder, implying but not specifically stating that the one
adder was the replacement for the multipliers and that there would also be and adder computing
p1+p2, for a total of two adders.

×

a

b

prod

mult (w,w2)

w

w

× w2

a
prod

mult_by_c (w,c,w2)

w × w2
C

a

b

prod

mult (w=8,w2)

8

8

× 16

a
prod

mult_by_c (w=8,c=1,w2)

8
8

1

Before instantiation and optimization.

After instantiation and optimization.

3


	Problem 1
	Part char 97
	Part char 98

	Problem 2

