
Name

Digital Design using HDLs

LSU EE 4755

Solve-Home Final Examination

Wednesday, 9 December 2020 to Friday, 11 December 2020 16:30 CST

Alias

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (15 pts)

Problem 4 (10 pts)

Problem 5 (35 pts)

Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/

Problem 1: [20 pts] Module prob1_seq, below, is based on the solution to 2016 Final Exam Problem
1 (also appearing in problem set https://www.ece.lsu.edu/koppel/v/guides/pset-syn-seq-main.pdf,
please look at that solution). In that problem an incomplete diagram of the hardware was given, similar to
the one on the next page, and a module was to be completed so that it computes v0*v0 + v0*v1 + v1*v1

consistent with the hardware. The completed module appears below, with minor simplifications. If you must
know, the simplifications include omitting the floating-point modules’ round inputs and status outputs. Also,
the case statement was replaced by an if/else statement. In case anyone is concerned, this wordy aside
would be omitted from an in-class exam.

Though module prob1_seq is now complete, the hardware diagram isn’t. In this problem complete the
diagram of the synthesized hardware based on the module below. The diagram omits the hardware for step,
select signals for the multiplexors, enable signals for some of the registers, etc. Optimize the hardware that
compares step to a constant. Do so by showing individual gates rather than an equality or comparison unit.

Complete the diagram so that it shows inferred hardware after some optimization.

Where step is compared to a constant, show individual gates, not a comparison unit.

module prob1_seq
(output logic [31:0] result, output logic ready,

input uwire [31:0] v0, v1, input uwire start, clk);

uwire [31:0] mul_a, mul_b, add_a, add_b, prod, sum;

logic [2:0] step;

logic [31:0] ac0, ac1;

localparam int last_step = 4;

always_ff @(posedge clk)

if (start) step <= 0;

else if (step < last_step) step <= step + 1;

CW_fp_mult m1(.a(mul_a), .b(mul_b), .z(prod));

CW_fp_add a1(.a(add_a), .b(add_b), .z(sum));

assign mul_a = step < 2 ? v0 : v1;

assign mul_b = step == 0 ? v0 : v1;

assign add_a = ac0, add_b = ac1;

always_ff @(posedge clk)

begin

ac0 <= prod;

if (step < 3) ac1 <= step ? sum : 0;

if (start) ready <= 0; else if (step == last_step-1) ready <= 1;

end

assign result = sum;

endmodule

2

https://www.ece.lsu.edu/koppel/v/guides/pset-syn-seq-main.pdf

v0

v1

clk

CW_fp_mult
m1

CW_fp_add
a1

32'd0

ac0

ac1

re
s
u
lt

start

ready

prob1_seq

3

Problem 2: [20 pts] Consider again that module from Problem 1 of the 2016 final exam. Appearing below
is the start of a Verilog description of a pipelined version of this module. The ports are the same as in
the sequential version from the previous problem, however the module must operate in pipelined fashion,
meaning that a new v0, v1 pair could arrive at the inputs each cycle.

Complete the module. Two floating-point units are instantiated for your convenience. Add floating-point
and other hardware as needed.

Complete module so that it operates in pipelined fashion.

module prob1_pipe (output uwire [31:0] result, output uwire ready,

input uwire [31:0] v0, v1, input uwire start, clk);

uwire [31:0] mul_a, mul_b;

uwire [31:0] add_a, add_b;

uwire [31:0] prod, sum;

// Add or modify FP units and other hardware.

CW_fp_mult m1(.a(mul_a), .b(mul_b), .z(prod));

CW_fp_add a1(.a(add_a), .b(add_b), .z(sum));

endmodule

4

Problem 3: [15 pts] Yet again, consider the solution to 2016 Final Exam Problem 1. (The solution appears
in the sequential problem set, https://www.ece.lsu.edu/koppel/v/guides/pset-syn-seq-main.pdf, feel
free to look at it.) Appearing below is an incomplete diagram of the hardware with some timing information
shown, and a timing diagram. In this problem several performance measures will be computed based on the
simple model.

v0

v1

clk

CW_fp_mult
m1

CW_fp_add
a1

32'd0

ac0

ac1

re
s
u
lt

start

ready

prob1_seq

4

4

5
15

start

clk

prod

ac0

ac1

sum

ready

step

v0² v0v1

v0v1+
 v0²

4 0 1 2 3

v1²

v0² v0v1 v1²

4

0 v0²

v0²

v0v1 + v0²

v1² + v0v1 + v0²

mul_a v0 v1

mul_b v0 v1 Mux delay.

Mult delay.

Let tm = 25 ut denote the delay of the CW_fp_mult unit and let ta = 20 ut denote the delay of the CW_fp_add
unit. The arrival times of signals at the multiplexor select inputs and at the ready register are shown

boxed in blue . Base the delay of the registers and multiplexors on the simple model.

(a) Determine the clock period for this module using the assumptions above and show the critical path on
which this clock period is based.

Determine the clock period. Show critical path used to determine the clock period.

Show work, and state any assumptions.

(b) Based on your answers above determine the latency and throughput for this calculation.

The latency is:

The throughput is:

5

https://www.ece.lsu.edu/koppel/v/guides/pset-syn-seq-main.pdf

Problem 4: [10 pts] The bfa_tree_bfas module below has a flaw: It won’t compile if wp < wa+wb. That’s
a big deal, because in many—perhaps most—cases when one multiplies two w-bit integers all one wants is
the w least significant bits of the product.

Modify the module so that it will work correctly for values of wp<=wa+wb. Do so in a way that generates
less hardware even without optimization of unconnected nets and unread variables.

module mult_tree_bfas #(int wa = 16, int wb = wa, int wp = wa + wb)

(output uwire [wp-1:0] prod,

input uwire [wa-1:0] a, input uwire [wb-1:0] b);

if (wa == 1) begin

assign prod = a ? b : 0;

end else begin

localparam int wn = wa / 2;

localparam int wx = wb + wn;

uwire [wx-1:0] prod_lo;

uwire [wx-1:0] prod_hi;

mult_tree_bfas #(wn,wb) mlo(prod_lo, a[wn-1:0], b);

mult_tree_bfas #(wn,wb) mhi(prod_hi, a[wa-1:wn], b);

assign prod[wn-1:0] = prod_lo[wn-1:0];

uwire c[wp-1:wn-1];

assign c[wn-1] = 0;

for (genvar i=wn; i<wx; i++)

bfa b(c[i], prod[i], prod_lo[i], prod_hi[i-wn], c[i-1]);

for (genvar i=wx; i<wx+wn; i++)

bha b(c[i], prod[i], prod_hi[i-wn], c[i-1]);

localparam int wz = wp - wx - wn;

if (wz > 0) assign prod[wp-1 :- wz] = 0;

end

endmodule

6

Problem 5: [35 pts] Answer each question below.

(a) When is it less expensive to implement design X using an FPGA, and when is it less expensive to
implement design X (the same design) using an ASIC? Cost here refers to the purchase price, not something
computed using the simple model.

An FPGA is less expensive for design X when . . . Explain.

An ASIC is less expensive for design X when . . . Explain.

(b) A testbench is written to verify whether a Verilog module does what it is supposed to do. (It’s not just
for homework assignments.) Consider a component that could quickly and thoroughly be tested after it has
been manufactured.

Is a testbench still necessary for the Verilog description of this component?

Explain.

A company has two testbench teams, the good team, and the okay team. (The good team is much better
than the okay team.) Is it better to use the good team (rather than the okay team) for the testbench when
the design is being made into an FPGA or when the design is being made into an ASIC?

Better to use the good team for writing the testbench when fabricating an © FPGA or © ASIC .

Explain.

7

(c) In each code fragment below indicate whether the non-blocking assignments are necessary, must be
replaced by a blocking assignment, or whether it does not matter which is used. Assume typical use of
Verilog.

Are the non-blocking assignments © necessary, © must be replaced by blocking assignments, © either
one will work .

Explain.

// Fragment A

always_comb begin x <= a + y; end // Line 1

always_comb begin a <= b + c; end // Line 2

Are the non-blocking assignments © necessary, © must be replaced by blocking assignments, © either
one will work .

Explain.

// Fragment B

always_ff @(posedge clk) begin x <= a + y; end // Line 1

always_ff @(posedge clk) begin a <= b + c; end // Line 2

(d) Consider three ways of designing digital hardware: combinational, sequential, and pipelined.

Sequential hardware is the lowest-cost alternative for many designs. (Some of which appear on this test.)
Provide an example of some non-trivial hardware for which a sequential design would not be less expensive
than a combinational design. The hardware might compute an arithmetic expression, as does the hardware
in Problem 1.

Non-trivial hardware that can’t be made less expensive with a sequential design compared with a combina-
tional design. Explain.

8

(e) Both modules below have an input port providing an array of unsigned integers, and an output port,
elt_min, which is set to the smallest of these numbers. The two modules are nearly identical, the difference
is that in min_b_s (the s is for shortcut) the loop ends when a value of 0 is found (because there can’t be
anything smaller, so why bother looking), while in min_b the loop always iterates for n-1 iterations. Consider
a situation in which most inputs contain a zero. Which module has a shorter critical path (meaning that it
is faster in a typical digital design)?

module min_b #(int w = 4, int n = 8)

(output logic [w-1:0] elt_min, input uwire [w-1:0] elts[n]);

always_comb begin

elt_min = elts[0];

for (int i=1; i<n; i++)

if (elts[i] < elt_min) elt_min = elts[i];

end

endmodule

module min_b_s #(int w = 4, int n = 8)

(output logic [w-1:0] elt_min, input uwire [w-1:0] elts[n]);

always_comb begin

elt_min = elts[0];

for (int i=1; i<n && elt_min > 0; i++)

if (elts[i] < elt_min) elt_min = elts[i];

end

endmodule

Which module has a shorter critical path, © min b or © min b s ?

Explain.

9

	Problem 1
	Problem 2
	Problem 3
	Part a
	Part b

	Problem 4
	Problem 5
	Part a
	Part b
	Part grrcount =subprobno
elax advance grrcount by-97
elax a
	Part grrcount =subprobno
elax advance grrcount by-97
elax a
	Part grrcount =subprobno
elax advance grrcount by-97
elax a

	Problem 1
	Problem 2
	Problem 3
	Part a
	Part b

	Problem 4
	Problem 5
	Part a
	Part b
	Part grrcount =subprobno
elax advance grrcount by-97
elax a
	Part grrcount =subprobno
elax advance grrcount by-97
elax a
	Part grrcount =subprobno
elax advance grrcount by-97
elax a

