
LSU EE 4755 Homework 2 Solution Due: 8 October 2019

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2019/hw02.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw02.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Homework Correction (December 2019)
When assigned in October 2019 this assignment defined clz backward, starting at the least-significant
bit. That has been corrected in this version and in the posted code.

Homework Overview
A count leading zeros (clz) operation returns the number of consecutive zeros starting at the most
significant bit of an integer’s binary representation. For example, the clz of 001012 is 2, the clz of
1012 is 0, and the clz of 32-bit number 02 is 32. The Verilog module below computes the clz of its
input:

module clz
#(int w = 19, int ww = $clog2(w+1))

(output var logic [ww-1:0] nlz, input uwire logic [w-1:0] a);

uwire [w:0] aa = { a, 1’b1 };

always_comb for (int i=0; i<=w; i++) if (aa[i]) nlz = w-i;

endmodule

The module was written as behavioral code, but it does turn out to be synthesizable. Nev-
ertheless, one may wonder if the synthesis program will do a good job with this. (Later in the
semester we will learn what kind of hardware will be inferred for the description above.) One way
to find out is to design a module which should be efficient and see how well it compares to what
the synthesis program does with the module above. That, and the use of generate statements, is
the subject of this assignment.

Testbench Code
The testbench for this assignment, which can be run when visiting the file in Emacs in a properly
set-up account by pressing F9 , tests the clz_tree module at several different widths. All should
initially fail. A shortened sample of the testbench output appears below:

ncsim> run

** Starting tests for width 1.

Error for width 1: input 1: z != 0 (correct).

Error for width 1: input 0: z != 1 (correct).

Error for width 1: input 1: z != 0 (correct).

Error for width 1: input 0: z != 1 (correct).

Width 1, done with 10 tests, 10 errors.

** Starting tests for width 2.

Error for width 2: input 3: z != 0 (correct).

Width 2, done with 20 tests, 20 errors.

** Starting tests for width 5.

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2019/hw02.v.html
https://www.ece.lsu.edu/koppel/v/proc.html

[snip]

Error for width 17: input 08959: z != 0 (correct).

Width 17, done with 170 tests, 170 errors.

ncsim: *W,RNQUIE: Simulation is complete.

ncsim> exit

Total number of errors: 610

The testbench prints the details of the first four errors it finds, and after that prints just one
detail time per width. A total for each width and a grand total are printed, see the transcript
above.

Use Simvision to debug your modules. Feel free to modify the testbench so that it presents
inputs that facilitate debugging.

Synthesis
The synthesis script, syn.tcl, will synthesize clz (for reference) and clz_tree (your solution).
Each module will be synthesized at three widths, and with two delay targets, an easy 10 ns and a
un-achievable 0.1 ns. If a module doesn’t synthesize −.001 s is shown for its delay. The script is
run using the shell command genus -files syn.tcl, which invokes Cadence Genus. If you would
like to synthesize additional modules or sizes edit syn.tcl near the bottom.

The synthesis script shows area (cost), delay, and the delay target in a neat table. Additional
output of the synthesis program is written to file spew.log.

Problem 1 on next page.

2

Problem 1: Complete module clz_tree so that it computes the clz of its input in a tree-like
fashion. For the non-terminal case it should instantiate two clz_tree modules and each should op-
erate on part of the input, a. The outputs of these two modules should be appropriately combined.
To help you get started, a recursive solution to Homework 1, mult_tree, is in hw02.v.

An easy mistake to make is using the wrong sized variable in a module port connection.
Previously the Verilog software (ncelab to be precise) would issue a warning which was easy to
miss. Now a port size mismatch is a fatal error.

For maximum credit do not use adders in your design. Adders can be avoided if the size of
the low module is always a power of 2.

See the Verilog code check boxes for additional items to check for.
The solution appears below. The partial-credit solution, using an adder, appears first.

/// SOLUTION – With Adder. Two points would be deducted.
module clz_tree_fat

#(int w = 19, int ww = $clog2(w+1))

(output uwire [ww:1] nlz, input uwire [w:1] a);

if (w == 1) begin

assign nlz = ~ a;

end else begin

localparam int wlo = w/2;

localparam int whi = w - wlo;

localparam int wwlo = $clog2(wlo+1);

localparam int wwhi = $clog2(whi+1);

uwire [wwlo:1] lz_lo;

uwire [wwhi:1] lz_hi;

clz_tree_fat #(wlo) clo(lz_lo, a[wlo:1]);

clz_tree_fat #(whi) chi(lz_hi, a[w:wlo+1]);

assign nlz = lz_hi < whi ? lz_hi : whi + lz_lo;

end

endmodule

The better solution, without the adder, is on the next page.

3

The solution below avoids an adder by setting the size of the hi module to a power of 2. If all of the high bits are

zero, then the clz is the count of the number of low bits, plus a power of 2. The power of 2 to add is parameter lhi (see

the code).

/// SOLUTION – Without Adder
module clz_tree #(int w = 19, int ww = $clog2(w+1))

(output uwire [ww-1:0] nlz, input uwire [w-1:0] a);

if (w == 1) begin

assign nlz = !a[0];

end else if (w == 2) begin

assign nlz = { !a[0] && !a[1], !a[1] && a[0] };

end else begin

// Set whi to the largest power of 2 strictly less than w.

//

localparam int lhi = $clog2(w) - 1;

localparam int whi = 1 << lhi;

localparam int wwhi = lhi + 1;

// Then set wlo to the number of remaining bits.

//

localparam int wlo = w - whi;

uwire [wwhi-1:0] nlz_lo, nlz_hi; // Note: nlz_lo may be 1 bit wider than needed.

// Instantiate recursive modules.

//

clz_tree #(wlo,wwhi) clo(nlz_lo, a[wlo-1:0]);

clz_tree #(whi,wwhi) chi(nlz_hi, a[w-1:wlo]);

// Split the nlz_lo and nlz_hi outputs into "overflow" (MSB) bits,

// ov_lo and ov_hi, and the remaining bits lz_lo and lz_hi.

//

uwire ov_lo, ov_hi;

uwire [lhi-1:0] lz_lo, lz_hi;

assign { ov_lo, lz_lo } = nlz_lo;

assign { ov_hi, lz_hi } = nlz_hi;

assign nlz = !ov_hi ? { 2’b00, lz_hi } : // Case 0

!ov_lo ? { 2’b01, lz_lo } : // Case 1

{ 2’b10, lz_lo }; // Case 2

// Case 0:

// Input to chi has a 1, so just use nlz_hi.

// This case occurs when the MSB of nlz_hi is 0.

// For this case just set nlz to nlz_hi.

//

// Case 1:

// Input to chi is all zeros, and wlo < whi or nlz_lo < whi.

// For this case set nlz = whi + nlz_lo = { 2’b01, lz_lo }.

//

// Case 2:

// Input to chi is all zeros, and nlz_lo == whi.

// If this condition is true then ov_lo = 1

// For this case set

// nlz = whi + nlz_lo = { 2’b1 + ov_lo, lz_lo } = { 2’b10, lz_lo }

4

end

endmodule

5

Problem 2: Run the synthesis program and indicate how your module compares to the behavioral
module, clz. Indicate which results are expected, and which are not expected, and explain why.

Attention students studying for exams: A good practice problem would be to show the synthesized hardware for

these modules.

The behavioral model looks at bits sequentially, starting at the most-significant bit. The hardware as initially

inferred would have a chain of multiplexors either selecting i if aa[i] were 1, or the prior value of nlz otherwise. The

nlz output would pass through w multiplexors, for a delay of w ut after optimizing for the fact that i is constant.

In contrast the critical path through the tree modules passes through dlgwe units, and so that should be faster.

In the 0.1 ns delay target results, shown below, the behavioral model is fastest at w = 30 bits and the adder-less

clz tree module is only fastest at w = 32 bits. At best, clz tree never does poorly when delay is a priority. The

behavioral module however is consistently more costly than clz tree.

Module Name Area Delay Delay

Actual Target

clz_w30 18540 1.653 10.000 ns

clz_tree_w30 17977 1.653 10.000 ns

clz_tree_fat_w30 17977 1.653 10.000 ns

clz_w32 26290 3.110 10.000 ns

clz_tree_w32 21706 1.425 10.000 ns

clz_tree_fat_w32 21401 1.296 10.000 ns

clz_w35 23140 1.300 10.000 ns

clz_tree_w35 22578 1.300 10.000 ns

clz_tree_fat_w35 26073 2.094 10.000 ns

clz_w30_1 30053 0.504 0.100 ns

clz_tree_w30_4 38532 0.650 0.100 ns

clz_tree_fat_w30_1 37798 0.861 0.100 ns

clz_w32_1 36476 1.007 0.100 ns

clz_tree_w32_5 37356 0.577 0.100 ns

clz_tree_fat_w32_2 32254 0.634 0.100 ns

clz_w35_1 37008 0.606 0.100 ns

clz_tree_w35_6 37008 0.606 0.100 ns

clz_tree_fat_w35_1 37008 0.606 0.100 ns

6

	Problem 0
	Problem 1
	Problem 2

