
Name Solution

Digital Design using HDLs

LSU EE 4755

Final Examination

Friday, 13 December 2019 10:00-12:00 CST

Alias It Begins

Problem 1 (30 pts)

Problem 2 (25 pts)

Problem 3 (20 pts)

Problem 4 (25 pts)

Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/

Problem 1: [30 pts] Appearing below is the solution to Homework 6, the accumulation module. The next
page shows the pipelined adder and st_occ, which is some of the inferred hardware. Show the rest of the
inferred hardware after some optimization. Leave the pipelined adder as a box.

module add_accum #(int w = 21, n_stages = 3)

(output logic [w-1:0] sum, output logic sum_valid,

input uwire [w-1:0] ai, input uwire ai_v, reset, clk);

logic [n_stages-1:0] st_occ;

assign sum_valid = !st_occ;

uwire aout_v = st_occ[n_stages-1];

uwire [w-1:0] aout;

uwire [w-1:0] a0 = ai_v ? ai : sum;

uwire [w-1:0] a1 = aout_v ? aout : sum;

add_pipe #(w,n_stages) add_p0(aout, a0, a1, clk);

logic sum_occupied;

uwire [1:0] n_values = ai_v + sum_occupied + aout_v;

uwire saa = n_values >= 2; // Start an addition.

uwire write_sum = !sum_occupied && n_values == 1;

always_ff @(posedge clk) if (reset) begin

sum <= 0;

sum_occupied <= 0;

st_occ <= 0;

end else begin

if (write_sum) sum <= aout_v ? aout : ai;

sum_occupied <= n_values[0];

st_occ <= { st_occ[n_stages-1:0], saa };

end

endmodule

� Show inferred hardware after some optimization, but �leave add pipe as a box.

� Show logic associated with n values as basic gates and a single BFA, do not show adders and do not show
comparison units.

�Clearly show all input and output ports, do not confuse parameters with ports.

�Avoid effortlessly optimized hardware, such as gates with constant inputs.

2

Solution appears below.

add_pipe
add_p0

aout
a0

a1

saa

aout_v

ai_v

ai

sum

1

0 en

0 sum

sum_valid

sum_occupiedreset

clk

add_accum

a

b ci
s

co

BFA

3

Problem 2: [25 pts] Appearing below is hardware from the solution to Homework 5, Problem 2. The
parameter names have been shortened, such as changing wv to v and using lg v for wvb. The diagram shows
the delay through some of the modules, including the pop module. Treat e and a (delays for = and +)
as given constants for the first part.

(a) Based on the provided delays and using the simple model for others, compute the arrival time (delay) of
signals at each register input. That’s two inputs for each of five registers. The solution for ready is shown
in blue, so only four registers remain. Also, highlight the/a critical path to the err register.

val

key

err

start

clk

re
a
d
y

cu
rr_p

o
s

sh
_v

a
l

pos

en

en

en

v
-k

1

en

enpop
p

1

0
1'b0

v-1:1

<

~0

k-
1

:0

0

ready

best_match
v,k

sh
_v

a
l

start

msb

lsb

=

+

st
a
rt

st
a
rt

v

k

lg k

lg vlg v

6 lg k

2 lg k

e

a

e+1

1

1Sample solution
in blue italic.

1

0

0

0

0

0

0

a
a
+

1

2
2

2+6lg k2
2

2+8lg k

2+6lg k + 1

0
2+8lg k+2

2+8lg k+3
= 5 + 8lg k

Solution
in green.

Critical Path

1

1

2

� Show the arrival time of the enable and data signal at each register input and �Highlight a critical path
to err with a squiggly line.

�Take into account constant inputs when computing delays.

4

Solution to part a: Arrival times at register inputs, as well as the delay at other points, shown in green. The critical path appears as

a red dashed (not squiggly) line.

Note that the delay of a mux with a constant data input is 1, which applies to two of the multiplexors in the diagram.

The critical path in the solution starts at key. It would also be correct to start the critical path at sh val (and passing through

the XOR gates).

A common mistake was to show the critical path passing through a register. Paths start at register outputs and end at register

inputs.

(b) The equality module is shown with a delay of e. Show the hardware for that module and compute the
cost and delay using the simple model. Take into account the width of the inputs and the fact that one
input is a constant.

� Sketch hardware for equality module for lg v = 8 and v − k = 1011 00012, and � taking into account the
constant input.

a[0]

b[0]

a[1]

b[1]

a[2]

b[2]

a[3]

b[3]

a

b

a
=
=
b

a[4]

b[4]

a[5]

b[5]

a[6]

b[6]

a[7]

b[7]

8b'1011001

0

0

0

1

1

1

1

a[0]

a[1]

a[2]

a[3]

a

b

a
=
=
b

a[4]

a[5]

a[6]

a[7]

8b'1011001

0

O
p

tim
ize

d
 b

a
se

d
 o

n
co

n
sta

n
t v

a
lu

e
 o

f b
.

R
e
g

u
la

r 8
-b

it
e
q

u
a
lity

 lo
g

ic.

Because of the constant input each XNOR gate

is optimized to either a NOT gate (where the

constant bit is 0) or just wire (where the con-

stant bit is 1). So the equality module is just

a dlg ve-input AND gate. See the illustration

to the right.

� Show the cost of the hardware for the equality module above based on the simple model in terms of lg v.�Don’t forget to take the constant input into account.

The hardware consists of a single lg v-input AND gate. Its cost is [lg v − 1] uc.

� Show the delay of the hardware based on the simple model in terms of lg v. � Don’t forget to take the
constant input into account.

The delay of an lg v-input AND gate is dlgdlg vee ut.

5

reset

clk

0

0

1 +

1

+

Fi

i

fibo, w=16

w

w

Problem 3: [20 pts] The hardware illustrated
to the right emits a famous integer sequence.
Write a synthesizable Verilog description of the
hardware.

�Complete the module, � be sure that it is
synthesizable.

�Use non-blocking assignments carefully.

�Be sure to include all �input and output ports
and �parameters.

�Make sure that all objects have the appropriate
widths.

Solution appears below. The warning about non-blocking assignments needed to be heeded in the solution below so that the value of

Fi used when updating Fi next would be based on the old value of Fi.

// SOLUTION

module fibo
#(int w = 16)

(output logic [w-1:0] Fi, i,

input uwire reset, clk);

logic [w-1:0] Fi_next;

always_ff @(posedge clk) if (reset) begin

Fi <= 0;

Fi_next <= 1;

i <= 0;

end else begin

Fi <= Fi_next;

// Note: The non-blocking assignment above insures that the Fi +

// Fi_next expression below is computed using the old value of Fi.

Fi_next <= Fi + Fi_next;

i <= i + 1;

end

endmodule

6

Problem 4: [25 pts] Answer each question below.

(a) Appearing below are synthesis script results for the pipelined integer adder from Homework 6. That
adder computes a w-bit integer sum using an n-stage pipeline in which each stage computes dw/ne bits of
the sum, starting with the dw/ne least-significant bits in the first stage.

All syntheses are of a w = 24-bit adder, versions with n = 1, 2, 3, 4, and 6 stages are synthesized. The delay
target is set to an easy 90 ns.

Module Name Area Delay Delay

Actual Target

add_pipe_w24_n_stages1 29928 10.174 90.000 ns

add_pipe_w24_n_stages2 47043 5.428 90.000 ns

add_pipe_w24_n_stages3 64159 3.701 90.000 ns

add_pipe_w24_n_stages4 81275 2.837 90.000 ns

add_pipe_w24_n_stages6 115506 1.973 90.000 ns

�Based on this data provide the � latency and � throughput for the three-stage adder. Be sure to �
use appropriate units for the throughput.

The latency is 3× 3.701 = 11.103 ns. The throughput is 1 addition
3.701 ns = 270.2× 106 additions per second.

�Note that the area (cost) increases with the number of stages. Based on the description above what is the
main contributor to the increase in cost?

The main contributor to cost are the registers. Each stage requires three registers, two for the source operands and one for the sum.

7

(b) The two modules below appear to be similar.

module plan_I(output logic [7:0] e, input logic [7:0] a,b);

logic [7:0] c;

always_comb begin

c = a + b;

e = c + a;

end

endmodule

module plan_II(output logic [7:0] e, input logic [7:0] a,b);

logic [7:0] c;

always_comb e = c + a;

always_comb c = a + b;

endmodule

�For which module will the simulator perform unnecessary addition? �Explain.

Module plan II will require extra work because when a changes the e = c + a can be executed twice, first for the change in a

then for the change in c due to execution of the c = a + b.

� Is the result computed by the two modules different or the same? �Explain.

The result at the end of a time step is the same. However plan II can leave e in different value than plan I during a time step

(before e = c+a executes a second time, as described above).

8

(c) What value will y have at the end of the initial block?

module s;
logic [15:0] a,b,y;

initial begin

a = 1; // SOLUTION information in comments below.

b = 100; // Value of b set to 100.

b <= 10; // Update event b = 10 is put in NBA region. b still 100.

y = 0; // Value of y set to zero.

y <= a + b; // a+b computed: 1 + 100 = 101. Update event y=101 put in NBA region.

y = 999; // Value of y set to 999.

#1; // After #1 reached NBA events executed:

// b set to 10

// y set to 101. (a+b computed above using older b).

// The lines below have no impact on y.

a = 2;

b <= 20;

#200;

// Show value of y at this point in execution.

// SOLUTION: y is 101.

end

endmodule

�Value of y at end of block is:

Short answer: y=101.

Explanation: y is assigned three times. For the blocking assignments, y=0 and y=999, the value is written when the respective

statement is executed. For the non-blocking assignment, y<=a+b, the value a+b is computed when the statement is reached, but

the result is not assigned until the simulator reaches the timeslot t = 0 NBA region. The same holds for non-blocking assignment

b<=10. For that reason a+b is computed using a=1 and b=100. See the comments in the code above.

9

(d) Consider the declarations below.

module types;
int en;

logic [31:0] lo;

bit [31:0] b;

uwire [31:0] u = 33;

localparam int p = 22;

endmodule

�Object u has the same data type as one of the other objects. Which is it?

It has the same data type as lo . The data type is logic. Declarator uwire is an object kind, not a data type. For uwire

kinds the default data type is logic.

�What is the difference between lo and b (logic and bit)?

Both are used to represent one bit. Type bit has two states, 0 and 1, while logic has four states, 0, 1, x, and z. The var

logic objects have value x until they are assigned a value. In net logic objects (such as something declared wire) the value is x

when there is more than one driver and at least one is driving a 0 and at least another is driving a 1. A net object with zero drivers

has value z. It is also possible to specify these values in literals, such as 1’bz.

�Notice that u is assigned a value. What is it about object lo that makes it illegal to assign a value in its
declaration?

Object lo is a variable type, and so it can only be assigned in procedural code.

�Add correct code to assign value 44 to lo.

The solution appears below. If the goal is to assign an initial value then an initial block is appropriate.

An assign lo=44; is wrong because lo is a var kind and continuous assignments (including assign) should only be performed

on net kinds, such as uwire.

// SOLUTION

initial lo = 44;

10

	Problem 1
	Problem 2
	Part a
	Part b

	Problem 3
	Problem 4
	Part a
	Part b
	Part grrcount =subprobno elax advance grrcount by-97elax a
	Part grrcount =subprobno elax advance grrcount by-97elax a

	Problem 1
	Problem 2
	Part a
	Part b

	Problem 3
	Problem 4
	Part a
	Part b
	Part grrcount =subprobno elax advance grrcount by-97elax a
	Part grrcount =subprobno elax advance grrcount by-97elax a

