
LSU EE 4755 Homework 2 Due: 25 September 2017

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete

Verilog for this assignment without visiting the lab visit

https://www.ece.lsu.edu/koppel/v/2017/hw02.v.html.

Problem 1: Let f‖ℜ → ℜ be an approximately linear function, for example, f(x) might be the
height of a tree that has been growing for x years. Suppose further that we have two pairs of values
for the function, a1 = f(x1) and a2 = f(x2) with x1 < x2. (For example, x1 = 1 year and a1 = 1m,
and x2 = 2 years and a2 = 1.5m.) To compute values of x between x1 and x2 we can use linear
interpolation a(x) = a1 + (x− x1)

a2−a1

x2−x1

. Notice that a(x1) = a1 and a(x2) = a2.
Module interp_behav has four 32-bit inputs x1, a1, x2, and a2. Each will hold a number in

shortreal representation, their values indicate the endpoints of a region to linearly interpolate, as
described in the previous paragraph. Input j, jw bits, is expected to be ⌊x−x1⌋, where x is a value
to interpolate. (For example, suppose x1 = 20. For x = x1 = 20, input j would be 0, for x = 25.7,
j=5.) Output aj is an 8-bit integer and is to be set to ⌊a(x1 + j)⌋. Though input j and output aj
are integers, it’s important that some of the calculation be done in floating-point to avoid rounding
errors, such as the computation a2−a1

x2−x1

. (Note: If you’re having trouble following this, don’t worry.
All you really need to do is to look at what interp_behav is doing.) Finally, 1-bit output valid
is set to 1 if ⌊x1⌋+ j ≤ ⌊x2⌋ and 0 otherwise.

module interp_behav

#(int jw = 12, amax = 255)

(output logic valid, output logic [7:0] aj,

input uwire [31:0] x1, a1, x2, a2, input uwire [jw-1:0] j);

always_comb begin

automatic shortreal x1r = $bitstoshortreal(x1);

automatic shortreal x2r = $bitstoshortreal(x2);

automatic shortreal a1r = $bitstoshortreal(a1);

automatic shortreal a2r = $bitstoshortreal(a2);

automatic int x1i = $floor(x1r);

automatic int x2i = $floor(x2r);

automatic int xj = x1i + j;

shortreal dadx, ajr;

valid = xj <= x2i;

dadx = (a2r - a1r) / (x2r - x1r);

ajr = a1r + j * dadx;

aj = ajr < 0 ? 0 : ajr > amax ? amax : $floor(ajr);

end

endmodule

The code in interp_behav computes these values using behavioral code. It is not synthesiz-

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2017/hw02.v.html

able because it uses operators to perform floating-point arithmetic. Module interp has the same
connections as inter_behav, and has some starter code. Modify module interp so it computes
the same values and is synthesizable. To do so instantiate ChipWare modules to perform floating-
point operations. Module interp already instantiates an adder and a float-to-int converter. Find
additional modules in the ChipWare documentation, which can be found on the course references
page. When using a ChipWare module put in an include directive at the end of the file. See the
end of hw02.v for examples.

module interp

#(int jw = 12, amax = 255)

(output logic valid, output logic [7:0] aj,

input uwire [31:0] x1, a1, x2, a2, input uwire [jw-1:0] j);

uwire [jw:0] x1i, x2i;

fp_ftoi #(jw+1) ftoi1(x1i, x1);

fp_ftoi #(jw+1) ftoi2(x2i, x2);

uwire [31:0] sum;

fp_add add1(sum, x1, x2); // An instantiation example, not otherwise useful.

// These are obviously incorrect, but they avoid synthesis errors.

assign aj = {1’b0, sum[6:0]};

assign valid = sum[8];

endmodule

The testbench will test module interp, it should initially report lots of errors. Of course,
when you are done there should be zero errors.

Follow the synthesis steps on the course procedures page to determine if interp is synthesiz-
able. If the elaborate step is successful then the module is synthesizable.

Problem 2: Floating-point hardware is relatively costly. Compare the cost of FP and integer
arithmetic units by synthesizing equivalent FP and integer adders and dividers. Wrap the ChipWare
modules in your own modules, (such as fp_add in hw02.v) and set parameters so the FP and integer
units are comparable. Then modify the synthesis script, syn.tcl, so that it will synthesize these
modules. The modules should be added to the list assigned on the set modules line.

Based on the data collected above, indicate how much less you think the cost would be of an
interp module that used integer arithmetic.

2

