
Name Solution

Digital Design using HDLs

EE 4755

Final Examination

Thursday, 8 December 2016 12:30-14:30 CST

Alias The Hottest Place in Hell

Problem 1 (30 pts)

Problem 2 (20 pts)

Problem 3 (15 pts)

Problem 4 (15 pts)

Problem 5 (10 pts)

Problem 6 (10 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/v/

Problem 1: [30 pts] The diagram and Verilog code below show incomplete versions of module prob1_seq.
This module is to operate something like mag_seq from Homework 6. When start is 1 at a positive clock
edge the module will set ready to 0 and start computing v0*v0 + v0*v1 + v1*v1, where v0 and v1 are
each IEEE 754 FP single values. The module will set ready to 1 at the first positive edge after the result is
ready.

Complete the Verilog code so that the module works as indicated and is consistent with the diagram. It is
okay to change declarations from, say, logic to uwire. But the synthesized hardware cannot change what is
already on the diagram, for example, don’t remove a register such as ac0 and don’t insert any new registers
in existing wires, such as those between the multiplier inputs and the multiplexors.

Don’t modify this diagram, write Verilog code.

v0

v1

clk

CW_fp_mult

m1

rnd

3
'b
0

CW_fp_add

a1

rnd

3'b0

32'd0

ac0

ac1

re
s
u
lt

start
readyprob1_seq

Don’t modify this diagram, write Verilog code.

2

Don’t modify, Verilog only.

v0

v1

clk

CW_fp_mult

m1

rnd

3
'b
0

CW_fp_add

a1

rnd

3'b0

32'd0

ac0

ac1

re
s
u
lt

start
readyprob1_seq

Problem 1, continued: Solution on this page.

� Complete Verilog so that module
computes v0*v0 + v0*v1 + v1*v1.

� Synthesized hardware must be consistent with di-
agram, � especially synthesized registers.

� Note that ready must come from a register.

� Don’t skip the easy part: connections to adder.

module prob1_seq(output uwire [31:0] result, output logic ready,

input uwire [31:0] v0, v1, input uwire start, clk);

uwire [7:0] mul_s, add_s;

uwire [31:0] mul_a, mul_b; uwire [31:0] add_a, add_b; uwire [31:0] prod, sum;

logic [31:0] ac0, ac1; logic [2:0] step;

localparam int last_step = 4; // ←− SOLUTION.

always_ff @(posedge clk) if (start) step <= 0;

else if (step < last_step) step <= step + 1;

CW_fp_mult m1(.a(mul_a), .b(mul_b), .rnd(rnd), .z(prod), .status(mul_s));

CW_fp_add a1(.a(add_a), .b(add_b), .rnd(rnd), .z(sum), .status(add_s));

// assign ready = step == last_step; // SOLUTION: Remove this line.

// SOLUTION (remainder of module is solution)

assign mul_a = step < 2 ? v0 : v1; // Connect FP multiplier ports ..

assign mul_b = step == 0 ? v0 : v1; // .. to appropriate values.

assign add_a = ac0, add_b = ac1; // Connect FP adder input ports.

always_ff @(posedge clk) begin // Assign registers ac0, ac1, and ready.

ac0 <= prod; // Always write ac0.

case (step) // Set ac1 based on the step value ..

0: ac1 <= 0; // .. *before* the positive clk edge.

1, 2: ac1 <= sum;

endcase

if (start) ready <= 0; // Reset ready *before* step 0 ..

else if (step == last_step-1) ready <= 1; // .. and set ready when will be done.

end

assign result = sum; // Connect FP adder output to this module’s output.

endmodule

3

To understand how the solution works refer to the timing diagram below. Note that the value of step in the second always ff

is before it is incremented.

v0

v1

clk

CW_fp_mult

m1

rnd

3
'b
0

CW_fp_add

a1

rnd

3'b0

32'd0

ac0

ac1

re
s
u
lt

start
readyprob1_seq

start

clk

prod

ac0

ac1

sum

ready

step

v0² v0v1

v0v1+

 v0²

4 0 1 2 3

v1²

v0² v0v1 v1²

4

0 v0²

v0²

v0v1 + v0²

v1² + v0v1 + v0²

mul_a v0 v1

mul_b v0 v1 Mux delay.

Mult delay.

4

Problem 2: [20 pts] Analyze the timing of the two similar modules on the next page using the timing
model used in class, as requested in the subproblems. Assume that all adders are synthesized as a ripple

connection of binary full adders and that the comparison units are also based on ripple hardware.

(a) Before analyzing the modules, show the delay of each of the components listed below using the simple
model given in class. For this part assume that all inputs are available at t = 0.

In the simple timing model the delay of an n-input AND and OR gate is ⌈lg n⌉ units, which works out to 1 for 2-input gates. For
larger gates the delay is what would be obtained by constructing a reduction tree of 2-input gates. NOT gates have a delay of zero.
Other combinational logic is based on the delay of an implementation using AND, OR, and NOT gates. For example, the delay of a
2-input XOR gate is 2.

5

� Delay for BFA is:

The delay (of bfa-unopt) is 4 units for the sum and 3 units for co.

When the a and b inputs arrive at least two cycles before ci, the delay of bfa-fast is 2 units from input ci to the sum and co
outputs. If a and b arrive at the same time as ci then the delay of bfa-fast is the same as bfa-unopt: 4 time units.

� Explain or show diagram.

Short Answer: The delay is based on the bfa-unopt BFA implementation below. The lower diagram shows the timing analysis.

Long Answer: Appearing below are two implementations of a binary full adder, shown with and without a timing analysis. In the
first, bfa-unopt, separate logic is used to generate the sum and carry out signals. In the second, bfa-fast, an XOR gate is
shared by the sum and carry out logic, both reducing cost and reducing the critical path in a ripple adder.

The blue labels show the gate delays, circled numbers show the time that a signal is available. The purple signals show the timing
under the assumption that all signals arrive at module inputs t = 0 and the green signals show the timing under the assumption that
the carry in signal arrives at t = 0 but that the a and b signals arrive at t = −2. The rationale for the green signals assumption
is that when a BFA is used as part of a ripple adder the carry in signal for all but the least-significant bit BFA will arrive later than
the a and b inputs. Note that even with the a and b signals arriving early the delay for co in BFA-unopt would still be 3.

In summary: For BFA-unopt, sum at t = 4 and carry out at t = 3. For BFA-fast with all signals arriving at t = 0, the sum
is available at t = 4 and carry out at t = 4. With early arrival, the carry out is available at t = 2.

a

b

ci c
o

s
u
m

BFA-unopt

a

b

ci c
o

s
u
m

BFA-fast

a

b

ci c
o

s
u
m

BFA-unopt

1

2

2
20

0

0

1

1

0

2

3

4

a

b

ci c
o

s
u
m

BFA-fast2

1

1

2
0

0

0

1

3

4

40

0

0

-2

-2

0

-2

-2

0

0

-1

1
2

2
2

All signals arrive at same time. E.g., BFA at LSB.

Carry-in arrives >= 2 units later. E.g., in BFA units after LSB.

6

� Delay for a w-bit adder is:

Using BFA-unopt the delay for w > 1 is 3w units for the carry out and 3w − 1 units for the MSB of the sum.

Using BFA-fast the delay for w > 1 is 2(w + 1) units for the carry out and the MSB of the sum. The LSB (bit 0) of the sum
arrives at time 4, bit 1 arrives at 6, and bit i of the sum arrives at time 4 + 2i.

� Explain or show diagram.

a

b

ci c
o

s
u
m

BFA-unopt
a

b

ci c
o

s
u
m

BFA-unopt

0

ci

a

b

w
w

0

0

4 5

3

a

b

ci c
o

s
u
m

BFA-unopt

0

a

b

ci c
o

s
u
m

BFA-unopt

0

a[w-1]

Bit 0 -- LSB Bit 1 Bit 2 Bit w-1 -- MSB
b[w-1]

6 9

8

3(w-1)

3w-1

3w

sum

3w-14

r���p������r w

a[2]

b[2]

a[1]

b[1]

a
[0
]

b[0]

Delay for bit 0 -- LSB

Delay for bit w-1 -- MSB w

a

b

ci c
o

s
u
m

BFA-fast

0

ci

a

b

w

w

0

0

4 6

4

0 0

a[w-1]

Bit 0 -- LSB Bit 1 Bit 2 Bit w-1 -- MSB
b[w-1]

8

2w

2���	

sum

4

��ple_add�� w

a[2]

b[2]

a[1]

b[1]

a
[0
]

b[0]

Delay for bit 0 -- LSB

Delay for bit w-1 -- MSB w

a

b

ci c
o

s
u
m

BFA-fast

6

a

b

ci c
o

s
u
m

BFA-fast

8

a

b

ci c
o

s
u
m

BFA-fast

2���	

2���	

Short Answer: As shown in red in the diagram above, the critical path passes from ci to co of the linearly-connected BFAs, so
the total delay is 3w using BFA-unopt or 2w + 2 using BFA-fast.

When BFA-unopt is used the co signal of the BFA for bit i is available at 3(i + 1), where i = 0 is the least-significant bit. If
the w-bit adder itself has a carry-out signal, the delay is 3w bits, based on the availability of the carry out at bit w− 1. If there is
no carry out then the delay of the MSB is two units after the arrival of the carry in, so the total delay is 3(w − 1) + 2 = 3w − 1
units. Bit i = 0, the LSB, of the sum is ready at t = 4, bit i ≥ 1 of the sum is ready at 3i+ 2.

When BFA-fast is used the co signal is available at time 4 for the LSB, for bit i it is available at 4 + 2i. The sum is available 2
cycles after the ci arrival, so overall timing is 4 + 2(w − 1) = 2w + 2 whether or not a carry out is used.

7

� Delay for a w-bit < (less than) comparison unit is:

Using subtraction, 3w units based on BFA-unopt or 2(w + 1) units using BFA-fast.

� Explain or show diagram.

To compute a < b use a w-bit adder to compute a− b, where a and b are w-bit unsigned numbers. (To perform subtraction the b
inputs are inverted and the adder carry in is set to 1. This doesn’t affect cost or delay under the simple model since NOT gates are
free and zero-delay.) If the carry out is zero then the difference is negative and so a < b is true. Note that logic that is only used
for computing sum is omitted.

Using BFA-unopt the delay is 3w, using BFA-fast the delay is 2w. (In both cases the cost is 5w. In BFA-unopt both XOR
gates are eliminated. In BFA-fast one XOR gate is eliminated and the other is replaced with an OR gate.)

� Delay for a w-bit, n-input multiplexor is:

The delay is ⌈lg⌈lg n⌉⌉+ 1 + ⌈lg n⌉ units.

� Explain or show diagram.

s

a0

a1

x

mux n, w

s=0

s
��
�

s
��
�

s
[lg

(n
)-1

]

a(n-1)

s=1

s=n-1

w

w

w

lg n

lg
 lg

 n

1

One decode AND per input (n total).

w gate ANDs per

input (nw total).

0

0

0

0

(lg
 lg

 n
) +

 1
 +

 lg
 n

w
 O

R
 g

a
te

s

As shown in the illustration above each mux input has an AND gate decoding the select signal (with some inputs inverted based on
the mux input number). The AND gate has ⌈lg n⌉ inputs (which is the number of bits in the select signal) and so by the simple
model has delay of ⌈lg⌈lg n⌉⌉ units. (For brevity the diagram omits the ceiling function.) The decoder and input connect to another
AND gate, adding 1 to the delay. Finally, there is an n-input OR gate, contributing another ⌈lg n⌉ units of delay.

8

Problem 2, continued:

(b) Find the length of critical path in the two modules below using the timings above. Where applicable

make the reasonable assumption that a ripple adder can start when its lower bits arrive, not when all bits
of its input are stable.

0

01

0

sum

sum

<

l���i

a

01

01

a
[0
]

a
[1
]

a
[2
]

a
[3
]

greedy_fit

w

w

w

ww

w

1

+

<

<

<

+

+

0

2w+2

2w+4

2w+8, 4w+6

4w+10

4w+12

8w+28

0

4w+16, 6w+14

6w+20

6w+24, 8w+22

8w+26

LSB Time MSB Time 01

01

0

sum

sum

<

limit

a

a
[0

]
a
[1

]
a
[2

]
a
[3

]

fcfs_fit

+

01

+

<

01

+

<

w

w

w

w

w

<

0

0

2w+2

2w+12

4, 2w+2

8, 2w+6

12, 2w+10

2w+14

2w+16

2w+6

2w+10

2w+8

� Length of critical path for greedy fit in terms of w. � Show work for partial credit.

Note: Around 9 October 2019 the solution was changed from a circuit using the unoptimized BFA to one

using the fast BFA.

Short Answer: Using bfa-fast the critical path length is 8w + 28 units, see the diagram above in which the critical path is
shown in red and is labeled with timing along the critical path.

Long Answer: The time for the comparison unit is 2w + 2 units. The time for an adder is 4 units to produce the LSB of the
sum and 2w + 2 for the complete sum, including the carry out. Note that because the comparison unit is implemented using the
carry path of an adder, it can start on the LSB as soon as it arrives (meaning before more significant bits arrive), and it can keep
up with the pace of a new input bit being ready every 2 time units after the 2nd bit. Signals arrive at the inputs to the a[1] adder
at time 2w + 4 and so the comparison gets its LSB at time 2w + 8, the next bits at 2w + 10, 2w + 12, 2w + 14, The
comparison unit’s output is ready at 2w + 8 + 2w + 2 = 4w + 10. Unfortunately for the a[2] adder one of its inputs is the
output of a multiplexor, meaning that all bits arrive at the same time and so it cannot start early.

� Length of critical path for fcfs fit in terms of w. � Show work for partial credit.

Short Answer: Using bfa-fast the critical path length is 2w + 16 units, see the diagram above in which the critical path is
shown in red and is labeled with timing along the critical path. Green shows timing of non-critical signals.

Long Answer: Unlike greedy_fit the inputs to the adders in fcfc_fit are either a module input or the output of another
adder. For that reason the second adder can start working on the LSB after only 4 units, and the third starts after 8 units. For this
reason the total delay through the 3 adders is 2× 4 + 2w + 2 = 2w + 10. The remainder of the critical path passes through a
comparison and a mux. The path through the first two multiplexors is almost critical, it just has two units of slack.

9

01

01

0

sum

<

sum

<

limit

a

a
[0

]
a
[1

]
a
[2

]
a
[3

]

fcfs_fit

+

01

+

<

01

+

<

w

w

w

w

w

Problem 3: [15 pts] Complete the Verilog code so that it cor-
responds to the module shown.

� Complete module.

The solution appears below. The module would be slightly simpler if the if
(i > 0) were removed (making the rsum+=a[i+1] unconditional) and
rsum were initialized to zero, but that would not exactly correspond to the
illustration. Full credit would be given to either solution.

module fcfs_fit #(int nelts = 4, int w = 16)

(output logic [w-1:0] sum,

input uwire [w-1:0] a[nelts], limit);

// SOLUTION

always_comb begin

logic [w-1:0] rsum; // Running sum.

rsum = a[0];

sum = 0;

for (int i=0; i<nelts; i++) begin

if (i > 0) rsum += a[i+1];

if (rsum < limit) sum = rsum;

end

end

endmodule

10

01

01

0

sum

<

sum

<

limit

a
[0

]
a
[1

]
a
[2
]

a
[3
]

fcfs_cfit n=4, w=16, a=

+

01

+

<

01

+

<

w

w

w

w

w

1
6
h
'2

7
4
0

1
6
h
'3

7
5
5

1
6
h
'4

7
2
0

1
6
h
'4

7
5
5

Problem 4: [15 pts] Appearing to the right is fcfs_cfit, a
version of the fcfs_fit module in which the a input has been
changed to a parameter, meaning that a is an elaboration-time

constant. Compute the cost of this module using the simple
model used in class and accounting for optimization based on

the constant values. As in an earlier problem, adders and com-
parision units are ripple-style.

� Cost of the a[0] comparison unit.

The cost is w − 1 gates.

� Explain.

a

b

ci c
o

BFA-unopt
a

b

ci c
o

BFA-unopt

a

b

w

w

compare_a_��_� w

1

a

b

ci c
o

B�A-unopt
1��1 1��0

1��0

1��0

a[2]

b[2]

a[1]

b[1]b[0]

a
[0
]

lt

Optimization for a[1] bit = 1. Optimization for a[2] bit = 0.Optimization for a[0] bit = 0.
1b'0

1b'0

1b'0

�
�

1
6
b
'1

1
1

1
_
0
0
0
0
_
1

1
1
1
_
0
0
1

0

Because one input is a constant the 5 gates per bit using BFA-unopt is reduced to 1, either an AND gate or an OR gate. (If
BFA-fast is used then the 4 gates per bit is also reduced to 1, either an AND or OR.) See the diagram above. The least significant
bit requires at most a NOT gate, which has a cost of zero. The total cost is w − 1 gates.

� Cost of the a[1] adder.

� Explain.

Since both inputs are constant the cost is zero.

11

s

��

��

x

m x!

1'b0

s

a0

a1

x

m x!

1'b0

s

a0

a1

x

m x!

1'b1

s

a0

a1

x

m x!

1'b1

s

a0

a1

x

m x!

1'b1

1'b0

s

a0

a1

x

m x!

1'b1

1'b0

1'b0

1'b0

Optimization Plan Completed Optimization

� Cost of the a[0] multiplexor.

� Explain.

Since both inputs are constant the cost is zero. The output
for bit 0 ≤ i < 16 is either the constant zero or, where
an a bit is 1, is equal to the select signal. See the bottom
row of the 2-input mux optimization diagram to the right.

� Cost of the a[2] multiplexor.

� Explain.

One input to the a[2] mux is constant. Where the con-
stant input bit is 0 the logic is just an AND gate (top row
of diagram) where it is 1 the logic is an AND and an OR
(middle row of diagram).

Total cost.

12

Problem 5: [10 pts] Answer each question below.

(a) A time slot in the Verilog event queue contains many regions, among them active, inactive, and NBA.

Explain how an event gets put in each region. (You can use the next subproblem for examples.)

� An event is put into the active region when:

Short Answer: When the active region is empty.

Explanation: All events in the first non-empty region are copied into the active region. Of the regions that have been mentioned, the
inactive region in the current time slot is checked first, followed by the NBA region in the current time slot, followed by the inactive
region in the next scheduled time slot, etc.

� An event is put into the inactive region when:

Short Answer: . . . when a delay such as #1 is encountered in procedural code and when a variable found in a sensitivity list changes.

Explanation: When a delay such as #d (for d ≥ 0) is encountered in procedural code an resume event will be scheduled in the inactive
region of time step t + d, where t is the current time slot. Note that #0 is perfectly okay for those who understand SystemVerilog
event timing. For example, in ... b=z+w; #0; c=q+r; ... when the #0 is reached a resume event will be put in the
inactive region of the current time slot to resume execution at the c= statement. If the delay had been #3 then the resume event
would be put in the inactive region of time slot t+ 3.

For those events with a sensitivity list, such as always comb, continuous assignments, and module instantiations, events are
scheduled when a variable on the sensitivity list changes. For example, consider always comb begin a=x+y;.... When x
changes an event to execute the always comb block will be put in the inactive region.

� An event is put into the NBA region when:

Short Answer: . . . when a non-blocking assignment is executed.

Explanation: For example, when execution reaches a statement like a<=b+1 the left-hand side, b+1 in the example, will immediately
be computed and then an update a event will be placed in the NBA region. The update event carries the value of b+1. Eventually
the NBA region will be copied to the active region and the update a event will be executed, causing a to change to the carried
value.

(b) In the code fragment below show the order in which the statements are executed after the posedge clk.
Identify a statement by the value that is assigned. The first two statements executed are a and b, that’s
shown. (Since a is a nonblocking assignment, the execution of a only means that a+1 was computed, it
doesn’t mean that a was changed.) Complete the “Order of statements” list.

module regions;

always_ff @(posedge clk) begin

a <= a + 1;

b = b + 1;

end

always_comb s = a + b;

always_comb ax = a + 2;

always_comb ay = ax + 5;

always_comb by = bx + 4;

always_comb bx = b + 3;

endmodule

� Order of statements: a, b,

Short answer: a, b, s, bx, by, s, ax, ay.

13

Problem 6: [10 pts] Appearing below is the pipelined mag module from Homework 6.

(a) Suppose it turns out that the multiply (CW_fp_mult) takes twice as long as the add (CW_fp_add). Based
on this fact, modify the pipeline to reduce cost, but without affecting clock frequency. Draw in your changes,
there’s no need to write Verilog. Also, comment on latency and throughput changes.

� Modify for lower cost based on faster adder.

Solution appears below after the unmodified module. The pipeline latch between the two adders was removed. With this change the
critical path length in the multiplier stage matches the critical path in the adder stage. (Before this change the critical path length
in each of the adder stages was half the critical path in the multiplier stage.)

� Does the change � help throughput? Does it help � latency?

The change does not change throughput because the clock frequency does not change. The module can complete one calculation per
cycle with or without the change.

The change reduces (helps) latency because there is one less stage.

v"#$

32

m
a
g%

v"&$

32

v"'$

32

(
)*
,

[0
]

p
l_

v
[1

]
p
l_

v
[2

]

p
l_
v
s
q
[1
][
0
]

p
l_
v
s
q
[2
][
2
]

vsq[0]

vsq[1]

vsq[2]

s
u
m
0
1

s
u
m
0
1
2

p
l_
s
o
s
[2
]

p
l_
v
s
q
[1
][
1
]

p
l_
v
s
q
[1
][
2
]

p
l_
s
o
s
[3
]

c-.

mag/030e

S5678 9

CW_fp_mult

2:m1

rnd

3
'b
0

CW_fp_add

a2

rnd

3'b0

CW_fp_add

a1

rnd

3'b0

CW_fp_mult

1:m1

rnd

3
'b
0

CW_fp_mult

0:m1

rnd

3
'b
0

S5678 : ;=>?@ A

CDEF

32

m
a
gG

CDHF

32

CDIF

32

J
KL
M

[0
]

p
l_
v
[1
]

p
l_
v
[2
]

p
l_
v
s
q
[1
][
0
]

vsq[0]

vsq[1]

vsq[2]

s
u
m
0
1

s
u
m
0
1
2

p
l_
v
s
q
[1
][
1
]

p
l_
v
s
q
[1
][
2
]

p
l_
s
o
s
[2
]

NOP

magQRTRe

UVWXY Z

CW_fp_mult

I[\H

]n^

3
'b
0

CW_fp_add

a2

]n^

3'b0

CW_fp_add

a1

rnd

3'b0

CW_fp_mult

H[\H

]n^

3
'b
0

CW_fp_mult

E[\H

]n^

3
'b
0

UVWXY ` befgh j

Pipeline

koquy

removed.

Solution

14

(b) Suppose that the v input arrives very early in the clock cycle. Based on this modify the pipeline to reduce
cost.

� Modify for early-arriving v.

Short Answer: Solution appears below after the unmodified module.

Explanation: In this case the pipeline latch at the inputs was removed, saving the cost of the pipeline latch. Since the inputs arrive
early there should be enough time to compute the products during the clock cycle in which the inputs first arrive. The removed
pipeline latch would be necessary if the inputs arrived later in a clock cycle, in that case the multiplication would not start until the
next clock cycle.

This modification does not change throughput but does reduce latency.

z{|}

32

m
a
g~

z{�}

32

z{�}

32

�
��
�

[0
]

p
l_
v
[1
]

p
l_
v
[2
]

p
l_
v
s
q
[1
][
0
]

p
l_
v
s
q
[2
][
2
]

vsq[0]

vsq[1]

vsq[2]

s
u
m
0
1

s
u
m
0
1
2

p
l_
s
o
s
[2
]

p
l_
v
s
q
[1
][
1
]

p
l_
v
s
q
[1
][
2
]

p
l_
s
o
s
[3
]

���

mag����e

����� �

CW_fp_mult

2:m1

rnd

3
'b
0

CW_fp_add

a2

rnd

3'b0

CW_fp_add

a1

rnd

3'b0

CW_fp_mult

1:m1

rnd

3
'b
0

CW_fp_mult

0:m1

rnd

3
'b
0

����� � ����� �

����

32
m
a
g�

����

32

����

32

p
l_
v
s
q
[1
][
0
]

p
l_
v
s
q
[2
][
2
]

vsq[0]

vsq[1]

vsq[2]

s
u
m
0
1

s
u
m
0
1
2

p
l_
s
o
s
[2
]

p
l_
v
s
q
[1
][
1
]

p
l_
v
s
q
[1
][
2
]

p
l_
s
o
s
[3
]

� ¡

mag¢£¤£e

¥¦§¨© ª

CW_fp_mult

�«¬�

®¯

3
'b
0

CW_fp_add

a2

®¯

3'b0

CW_fp_add

a1

rnd

3'b0

CW_fp_mult

�«¬�

®¯

3
'b
0

CW_fp_mult

�«¬�

®¯

3
'b
0

¥¦§¨© ° ¥¦§¨© ±

Pipeline

²³´µ¶

removed.

Solution

15

