
LSU EE 4755 Homework 1 Solution Due: 9 September 2015

The questions below can be answered without using EDA software, paper and pencil will suffice.

Please turn in the solution on paper. Homework 2 will require the use of Verilog implementations.

Those who are rusty about the correspondence between Verilog code and hardware might want

to look at the solution to EE 3755 Fall 2013 Homework 1, at

http://www.ece.lsu.edu/ee3755/2013f/hw01_sol.pdf.

Problem 1: The routine shift_right_fixed_amt uses the >> operator to perform the right shift.
Perhaps you are wondering if the operation is an arithmetic right shift or a logical right shift. (In a
logical right shift the vacated bit positions are always set to zero, in an arithmetic shift they are set
to the MSB of the input.) Look up the operation performed by this operator in the SystemVerilog
2012 documentation.

module shift_right_fixed_amt

#(int fsamt = 4) // Fixed shift amount.

(output wire [15:0] shifted,

input wire [15:0] unshifted,

input wire shift);

// If shift is true shift by fsamt, otherwise don’t shift.

//

assign shifted = shift ? unshifted >> fsamt : unshifted;

endmodule

(a) Indicate the section and page in which this information can be found.
Section 11.4.10, on page 233.

(b) Show how the module can be modified to perform the other kind of shift (if it’s currently
arithmetic, make it logical, if it’s currently logical make it arithmetic).

Two changes need to be made: The type of the value to be shifted must be changed to signed, and the operator
must be changed from >> to >>>. The changed code appears below.

module shift_right_fixed_amt_sol

#(int fsamt = 4) // Fixed shift amount.

(output wire [15:0] shifted,

input wire signed [15:0] unshifted, // SOLUTION, change to signed.

input wire shift);

// SOLUTION, change ">>" operator to ">>>".

//

assign shifted = shift ? unshifted >>> fsamt : unshifted;

endmodule

1

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/ee3755/2013f/hw01_sol.pdf

Problem 2: Appearing below are two variations on a min_4 module that finds the minimum of
four unsigned integers. Both of these modules instantiate the following min_2 module.

module min_2

#(int elt_bits = 4)

(output [elt_bits-1:0] elt_min,

input [elt_bits-1:0] elt_0,

input [elt_bits-1:0] elt_1);

assign elt_min = elt_0 < elt_1 ? elt_0 : elt_1;

endmodule

(a) Draw a diagram of the hardware that will be synthesized for the min_4_t module below. Your
diagram should include two-input multiplexors and a comparison module. To get an idea of what
to draw, see the EE 3755 Homework solution mentioned at the top of this assignment.

module min_4_t

#(int elt_bits = 4)

(output [elt_bits-1:0] elt_min,

input [elt_bits-1:0] elts [4]);

wire [elt_bits-1:0] im1, im2;

min_2 #(elt_bits) m1(im1, elts[0], elts[1]);

min_2 #(elt_bits) m2(im2, elts[2], elts[3]);

min_2 #(elt_bits) m3(elt_min, im1, im2);

endmodule

Solution appears below.

elt_0

elt_1 e
lt
_
m
in

min_2

<

elt_0

elt_1 e
lt
_
m
in

min_2

<

elt_0

elt_1 e
lt
_
m
in

min_2

<

elts[0]

elts[1]

elts[2]

elts[3]

e
lt
_
m
in

im1

im2

m1

m2

m3

min_4_t

2

(b) Draw a diagram of the hardware that will be synthesized for the min_4_l module below. Your
diagram should include two-input multiplexors and a comparison module.

module min_4_l

#(int elt_bits = 4)

(output [elt_bits-1:0] elt_min,

input [elt_bits-1:0] elts [4]);

wire [elt_bits-1:0] im1, im2;

min_2 #(elt_bits) m1(im1, elts[0], elts[1]);

min_2 #(elt_bits) m2(im2, im1, elts[2]);

min_2 #(elt_bits) m3(elt_min, im2, elts[3]);

endmodule

Solution appears below.

elt_0

elt_1 e
lt
_
m
in

min_2

<

elt_0

elt_1 e
lt
_
m
in

min_2

<

elt_0

elt_1 e
lt
_
m
in

min_2

<

elts[0]

elts[1]

elts[2]

elts[3]

e
lt
_
m
in

im1
im2

m1
m2

m3

min_4_l

(c) Which of the two modules above would you expect to have lower cost? Which would you expect
to be faster? Briefly explain.

The cost of the two modules should be the same. Module min 4 t should be faster because the longest path through
the module is through two min 2 modules, whereas in min 4 l the longest paths is through three min 2 modules.

3

Problem 3: The module min_4_err below is correct Verilog, but it won’t do what we want.

module min_4_err

#(int elt_bits = 4)

(output [elt_bits-1:0] elt_min,

input [elt_bits-1:0] elts [4]);

wire [elt_bits-1:0] im;

min_2 #(elt_bits) m1(im, elts[0], elts[1]);

min_2 #(elt_bits) m2(im, im, elts[2]);

min_2 #(elt_bits) m3(elt_min, im, elts[3]);

endmodule

(a) Explain why it’s correct Verilog yet provides the incorrect result.
The problem is that the output of m1 and m2 are both connected to the same net, im. This may lead to conflicts,

for example, when m1 wants to set bit im[0] to 1 but m2 wants to set it to 0. The simulator will assign an x for such
cases. Worse, in m2 an output and an input are connected to the same loop.

(b) Look up uwire in the SystemVerilog standard and explain how that might help catching such
errors.

Unlike a net of type wire, a net of type uwire can only be driven by one source. See IEEE Std 1800-2012 Section
6.6.2. A net connected in the same way as im, above, would result in a Verilog compiler error.

4

Problem 4: Appearing below is yet another variation on min_4, this one attempting to take
advantage of a special case by using generate statements. The module is correctly using generate
statements to handle a special case. Do you think the synthesized hardware will be less expensive
for the special case beyond the reduction in cost for using fewer bits. Hint: Think about what the
comparison unit and mux would look like with 1-bit inputs and how such logic can be optimized.

Note: In the original assignment this problem had a typo, which made the Verilog illegal.

Further, the phrase above starting “beyond the reduction” was not in the original question, making

it difficult to see what was really being asked. The answer below is for the corrected question.

module min_4_special1

#(int elt_bits = 4)

(output [elt_bits-1:0] elt_min,

input [elt_bits-1:0] elts [4]);

if (elt_bits == 1) begin

assign elt_min = elts[0] && elts[1] && elts[2] && elts[3];

end else begin

wire [elt_bits-1:0] im1, im2;

min_2 #(elt_bits) m1(im1, elts[0], elts[1]);

min_2 #(elt_bits) m2(im2, im1, elts[2]);

min_2 #(elt_bits) m3(elt_min, im2, elts[3]);

end

endmodule

The special case is, of course, and AND gate and we expect that the synthesis program can easily handle those.
When elt bits is greater than one the synthesis program sees a linear connection of min 2 modules

5

Problem 5: The module below handles another special case, in this case the case where the first
element is zero.

module min_4_special2

#(int elt_bits = 4)

(output [elt_bits-1:0] elt_min,

input [elt_bits-1:0] elts [4]);

wire [elt_bits-1:0] im1, im2;

if (elts[0] == 0)

assign elt_min = 0;

else begin

min_2 #(elt_bits) m1(im1, elts[0], elts[1]);

min_2 #(elt_bits) m2(im2, im1, elts[2]);

min_2 #(elt_bits) m3(elt_min, im2, elts[3]);

end

endmodule

(a) Explain why the module is illegal Verilog.
The if statement, testing elts[0], is not in procedural code (for example, in an initial or always), and

so it will be interpreted as a generate statement. Generate statements can only access elaborate-time constants, such as
parameters and variables declared genvar. A module input port, such as elts, is definitely not such a constant and so
there is an error.

(b) Explain why what it’s trying to do would be unlikely to help within a larger design. Hint: Think

about critical path.

Suppose that the delay through min 4 special2 when elts[0]==0 is 1 ns and is 3 ns in other cases. Suppose
that the output of min 4 special2 is connected to logic that has another 5 ns of delay. Setting a clock period to
1 + 5 = 6ns would result in errors when the special case was not present and setting it to 3 + 5 = 8ns would make
the special-case hardware unnecessary.

It’s not impossible to take advantage of the special case. To do so external logic would need to detect it (an output
indicating the special case could be added to min 4 special2) and there would have to be some advantage for the
special case. One possibility is that for the special case results from the external logic would be captured in one cycle,
otherwise it would take two cycles.

6

