Sequential Logic is Harder
Synthesis of Sequential Logic from Behavioral Code
It’s all about the flip-flop.

Storage devices are the distinguishing feature ...
... that differentiate combinational and sequential logic.

Why sequential logic is so much harder than combinational logic.

Inference: There isn’t an operator that synthesizes to a flip-flop ...
... as there is, say, with + for addition.

Logic Design: Designs are trickier ...
. it’s not just what will happen ...
. it’s not even just when it will happen ...
... but whether this happens before that or after that.

Verilog Subtleties: Those ignorant of Verilog timing may be tormented. ..

... with seemingly arbitrary errors or behavior.



Inference of Registers >> Genus’ Generic Flip-Flop
Inference of Registers

Genus’ Generic Flip-Flop: flop.

flop features: apre Srl
Is positive edge triggered (clk).

clk ﬂop

Has input d and output g.
Has asynchronous preset (apre) and clear (alcr). d

Has a sync. enable (sena) input.
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Inference of Registers >> Genus’ Generic Flip-Flop

Inference and Technology Mapping apre Srl
During elaboration f1lop used for all inferred edge-triggered reg-

isters. clk ﬂ 0 p
During technology mapping flop replaced with registers from

technology library. d
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Inference of Registers > Classroom Hardware Diagrams
Classroom Hardware Diagrams
The term register will be used for one or more flip-flops.

For inferred and optimized hardware. ..

... will use streamlined diagrams, omitting unused inputs:
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Inference of Registers > Edge-Triggered Flip-Flop Inference > Inference Review
Edge-Triggered Flip-Flop Inference

Inference

Selecting a hardware component corresponding to a piece of Verilog behavioral code.
Performed by a synthesis program.

Relationship between behavioral Verilog and inferred hardware . ..
. is determined by the synthesis program. ..
. not by the Verilog standard or any other standard document.



Inference of Registers > Edge-Triggered Flip-Flop Inference > Rules
Edge-Triggered Flip-Flop Inference Rules

These Inference Rules

Based on Encounter RTL Compiler.

Reference: HDL Modeling in Encounter RTL Compiler 14.2 April 2015.

For inference of edge-triggered register R clocked by clk:
R must be a variable type.

R must be assigned in exactly one always block ...
... and must be either consistently blocking (R=x;) ...

... or consistently non-blocking (R<=x; ).
The always block must start with always or always ff.

The always must be followed by an event control of the form @( posedge clk,

co).



Inference of Registers > Coding Common Edge-Triggered Registers > Simple

register

Simple Edge-Triggered Register

module register
#( int width = 16 )
( output logic [width-1:0] val,
input uwire [width-1:0] data,
input uwire clk );

L data val

.
0
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always_ff Q@( posedge clk ) val <= data;
endmodule

clk




Inference of Registers > Coding Common Edge-Triggered Registers > With Enable

Register with Enable

module register_en
#( int width = 16 )
( output logic [width-1:0] val,
input uwire enable,
input uwire [width-1:0] data,
input uwire clk );

always_ff @( posedge clk )
if ( enable ) val <= data;

endmodule
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Simple Example Circuits: Clocks > Clock with Reset

Clock with Reset

Note multiple ¢ values.

count_reset

module count_reset reset

C
16'd1

16'd0

C
Do
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|
L

#( int bits = 16 )
( output logic [bits-1:0] c,
input uwire reset, clk
-

[

input uwire clk ); u|

|

L

always_ff Q@( posedge clk ) if ( reset ) c <= 0; else c <= ¢ + 1;

endmodule



Simple Example Circuits: Clocks > Clock with Threshold >> Version One

count_thd
Threshold Output
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module count_thd
#( int bits = 16 )
( output logic [bits-1:0] c,
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output logic over_th, clk _]/\ E'
input uwire [bits-1:0] threshold, £ 8
input uwire clk );
always_ff @( posedge clk ) t 0 1 2
begin [+ clk
c =c+ 1; T -
over_th = ¢ > threshold; cF 1 Xz
end
endmodule
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Simple Example Circuits: Clocks > Clock with Threshold >> Version One’s Problems

Two Issues:
Critical path through adder/comparison unit.

Do we really want a flip-flop for over_th?

count_thd
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Simple Example Circuits: Clocks > Clock with Threshold >> Faster Version

Fix critical path issue.

module count_thd_ alt2
#( int bits = 16 )
( output logic [bits-1:0] c,
output logic over_th,
input uwire [bits-1:0] threshold,
input uwire clk );

always_ff @( posedge clk )
begin
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over_th = ¢ > threshold;
c =c+ 1; clk
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Simple Example Circuits: Clocks > Clock with Threshold > Alternative Threshold Behavior

React any time to threshold, not just at positive edge.

module count_thd alt
#( int bits = 16 )
( output logic [bits-1:0] c,
output logic over_th,

count_thd_alt
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input uwire [bits-1:0] threshold, '-:r"
input uwire clk ); é
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always_ff Q( posedge clk ) c <= c + 1; %
0

always_comb over_th = ¢ > threshold;
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Sequential Shifter
Example: Sequential Shifter

Remember: We can build a w-bit shifter using ...

... [lgw] 2'-bit fixed-amount shifters and 2-input muxen ...

. for i e {2021 22 . 2llewl=11
Why not use one fixed shifter and use it up to w — 1 times?

Why not use fewer than [lgw]| shifters and muxen ...
... but use them multiple times?

We’ll start with one fixed shifter.

Idea sketch for sequential shifter.

Pass value through shifter amt times.

shift_It_seq

sf amt trips
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Sequential Shifter

Idea sketch for sequential shifter.

shift_It_seq
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Use register cnt to count number of times.



Sequential Shifter

Timing.

1: External device provides inputs.

Inputs assumed to be available. ..
... early in clock cycle.
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Sequential Shifter

Timing.

2: At positive edge:
cnt initialized to amt.

shifted initialized to unshifted.
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Sequential Shifter

Timing.

3: Early in Cycle 1:

ready goes to zero.
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Sequential Shifter

Timing.

4: During cycles 1 and 2:

New value of count is com-
puted, “shift” performed.
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Sequential Shifter

Timing.

5: Beginning of cycle 3:

Ready signal set to 1.
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Sequential Shifter

Notes about behavior.
Start signal must be stable at
positive edge.

Inputs required to be avail-
able early in clock cycle.

Result available at beginning
of clock cycle.

Ready signal available early
in clock cycle.
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Sequential Shifter

Sequential Shifter Verilog

module shift_It_seq #( int wid_lg = 4, int wid = 1 << wid_lg )
( output logic [wid-1:0] shifted,
input [wid-1:0] unshifted,
input start, input clk );

output uwire ready,
input [wid_1g-1:0] amt,

uwire [wid-1:0] sf_out;

shift_fixed #(wid_1g,1) sf( sf_out, shifted, 1’bl ); // Fixed Shifter
logic [wid_1g-1:0] cnt;

always_ff ©( posedge clk )
if ( start == 1 ) begin

shifted = unshifted; // Load a new item to shift

cnt = amt; // .. and initialize amount.

end else if ( cnt > 0 ) begin

shifted = sf_out; // Shift by one more bit

cnt——; // .. and update count.

end

assign ready = cnt == 0; // Set ready to 1 when count is zero.

endmodule
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Sequential Shifter

Inferred Hardware, No Optimization

module shift It seq

#( int wid_lg = 4, int wid = 1 << wid_1lg )

( output logic [wid-1:0] shifted,

output uwire ready,

input [wid-1:0] unshifted,

input [wid_1g-1:0] amt,

input start, input clk );

uwire [wid-1:0]

sf_out;

shift_fixed #(wid_lg,1) sf(sf_out,shifted,

logic [wid_1g-1:0] cnt;

always_ff ©( posedge clk )
if ( start == 1 ) begin

shifted = unshifted;
cnt = amt;

end else if ( cnt > 0 ) begin

shifted = sf_out;
cnt——;

end else begin shifted = shifted;

assign ready = cnt == O;

endmodule

cnt

1);

cnt; end
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Sequential Shifter

Inferred Hardware, No Optimization
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Sequential Shifter

Pay Attention To

Setup delay: in-
puts to registers.

Operation delay:
register to regis-
ter.
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Sequential Shifter
Streamlining and Optimization
Streamline hardware illustration to make it readable.

Include optimizations we hope synthesis program will make.

Optimization Opportunities
Use an enable for registers.
Shifter is just a bit renaming plus one zero.

The three operations on cnt, ¢ > 0, c — 1, and ¢ ==
... can all be done by the same logic.



Sequential Shifter
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Sequential Shifter

Sequential Shifter with Multiple Shifters

For example: Shift x by 9 bits.

shift_It seq_d num_shifters=2
Use a sequential shifter with 4-bit and 1-bit shifters.
sfl sf4
Shift by 4-bits twice and by 1-bit once. 3@@;@@‘1 fvty_f,t_c,;fl,f(ed
amt=1 amt=4
3 g
L |5 shifted | |5 shifted £ E
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Sequential Shifter
Performance Analysis and Design Optimization

Goal: Choose the best shifter for some larger design.
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