Sequential Logic is Harder
Synthesis of Sequential Logic from Behavioral Code
It’s all about the flip-flop.

Storage devices are the distinguishing feature ...
... that differentiate combinational and sequential logic.

Why sequential logic is so much harder than combinational logic.

Inference: There isn’t an operator that synthesizes to a flip-flop ...
... as there is, say, with + for addition.

Logic Design: Designs are trickier ...
. it’s not just what will happen ...
. it’s not even just when it will happen ...
... but whether this happens before that or after that.

Verilog Subtleties: Those ignorant of Verilog timing may be tormented. ..

... with seemingly arbitrary errors or behavior.

Inference of Registers >> Genus’ Generic Flip-Flop
Inference of Registers

Genus’ Generic Flip-Flop: flop.

flop features: apre Srl
Is positive edge triggered (clk).

clk ﬂop

Has input d and output g.
Has asynchronous preset (apre) and clear (alcr). d

Has a sync. enable (sena) input.

aclr srd

Inference of Registers >> Genus’ Generic Flip-Flop

Inference and Technology Mapping apre Srl
During elaboration f1lop used for all inferred edge-triggered reg-

isters. clk ﬂ 0 p
During technology mapping flop replaced with registers from

technology library. d

aclr srd

Inference of Registers > Classroom Hardware Diagrams
Classroom Hardware Diagrams
The term register will be used for one or more flip-flops.

For inferred and optimized hardware. ..

... will use streamlined diagrams, omitting unused inputs:

aclr srd

[
LH

clk

register_en
enable
H en
-+ data val -+
. D .

Inference of Registers > Edge-Triggered Flip-Flop Inference > Inference Review
Edge-Triggered Flip-Flop Inference

Inference

Selecting a hardware component corresponding to a piece of Verilog behavioral code.
Performed by a synthesis program.

Relationship between behavioral Verilog and inferred hardware . ..
. is determined by the synthesis program. ..
. not by the Verilog standard or any other standard document.

Inference of Registers > Edge-Triggered Flip-Flop Inference > Rules
Edge-Triggered Flip-Flop Inference Rules

These Inference Rules

Based on Encounter RTL Compiler.

Reference: HDL Modeling in Encounter RTL Compiler 14.2 April 2015.

For inference of edge-triggered register R clocked by clk:
R must be a variable type.

R must be assigned in exactly one always block ...
... and must be either consistently blocking (R=x;) ...

... or consistently non-blocking (R<=x;).
The always block must start with always or always ff.

The always must be followed by an event control of the form @(posedge clk,

co).

Inference of Registers > Coding Common Edge-Triggered Registers > Simple

register

Simple Edge-Triggered Register

module register
#(int width = 16)
(output logic [width-1:0] val,
input uwire [width-1:0] data,
input uwire clk);

L data val

.
0
O
'®)
.
|

jcm

(|
L

always_ff Q@(posedge clk) val <= data;
endmodule

clk

Inference of Registers > Coding Common Edge-Triggered Registers > With Enable

Register with Enable

module register_en
#(int width = 16)
(output logic [width-1:0] val,
input uwire enable,
input uwire [width-1:0] data,
input uwire clk);

always_ff @(posedge clk)
if (enable) val <= data;

endmodule

LH

register_en
E]enabm en
E]data o o vaIE
rjcm
L]
t 0 1 2
cIk_
enabIeJ s g
data 7 3 6 Jlaf2)s |9

val O X7

Simple Example Circuits: Clocks > Clock with Reset

Clock with Reset

Note multiple ¢ values.

count_reset

module count_reset reset

C
16'd1

16'd0

C
Do

A

|
L

#(int bits = 16)
(output logic [bits-1:0] c,
input uwire reset, clk
-

[

input uwire clk); u|

|

L

always_ff Q@(posedge clk) if (reset) c <= 0; else c <= ¢ + 1;

endmodule

Simple Example Circuits: Clocks > Clock with Threshold >> Version One

count_thd
Threshold Output

(mm|
L

module count_thd
#(int bits = 16)
(output logic [bits-1:0] c,

tH
ploysaiya
>
Q
~
+
(\v)
over_th!
) _ o
>
o O
(mm|
[m

K=
output logic over_th, clk _]/\ E'
input uwire [bits-1:0] threshold, £ 8
input uwire clk);
always_ff @(posedge clk) t 0 1 2
begin [+ clk
c =c+ 1; T -
over_th = ¢ > threshold; cF 1 Xz
end
endmodule
Cl
[+ threshold 2 \ Xé
Oy Y
over tht

0 OIOIOIOIOIOIOIOIOIOIO01010101(((0101010OIOIOIOIOIOIOM 0
? T S

over_th £1 0 X 1 X 0

Simple Example Circuits: Clocks > Clock with Threshold >> Version One’s Problems

Two Issues:
Critical path through adder/comparison unit.

Do we really want a flip-flop for over_th?

count_thd
Cl CF—I
- + D Q (|
3 164l :'c_, JAN
3 o
= 9]
S 2
- = D Q =
|
| .
clk —— o
1 0o
LT

[+ clk

[+ threshold 2

over et o JIIC: Ao (o

over_th t£1 0 X 1 X 0

Simple Example Circuits: Clocks > Clock with Threshold >> Faster Version

Fix critical path issue.

module count_thd_ alt2
#(int bits = 16)
(output logic [bits-1:0] c,
output logic over_th,
input uwire [bits-1:0] threshold,
input uwire clk);

always_ff @(posedge clk)
begin

T Ploysaays

[

count_thd_alt2

0

16'dl

over th

O

over_th = ¢ > threshold;
c =c+ 1; clk
end

g
Ll

|
L

H

over th

l_

Ll

endmodule

Simple Example Circuits: Clocks > Clock with Threshold > Alternative Threshold Behavior

React any time to threshold, not just at positive edge.

module count_thd alt
#(int bits = 16)
(output logic [bits-1:0] c,
output logic over_th,

count_thd_alt

16'd1 JAN

|
L

H

input uwire [bits-1:0] threshold, '-:r"
input uwire clk); é

-

always_ff Q(posedge clk) c <= c + 1; %
0

always_comb over_th = ¢ > threshold;

clk

endmodule

g
Ll

O

over th

I_

Ll

Sequential Shifter
Example: Sequential Shifter

Remember: We can build a w-bit shifter using ...

... [lgw] 2'-bit fixed-amount shifters and 2-input muxen ...

. for i e {2021 22 . 2llewl=11
Why not use one fixed shifter and use it up to w — 1 times?

Why not use fewer than [lgw]| shifters and muxen ...
... but use them multiple times?

We’ll start with one fixed shifter.

Idea sketch for sequential shifter.

Pass value through shifter amt times.

shift_It_seq

sf amt trips

shift_fixed | \thru shifter

shifted

unshifted o)
I
=
shifted \| <
& 3
unshifted
/\
]
start
B
amt
B
(|
LT
clk

(|

’_Lready

L

Sequential Shifter

Idea sketch for sequential shifter.

shift_It_seq
sf
shift_fixed
unshifted - S
et =
- —
shifted \I < <
(|
L]
(| J
| .
unshifted
1
5 J
C
O
cnt
e)
c ©
(]
i
(|
L]

Use register cnt to count number of times.

Sequential Shifter

Timing.

1: External device provides inputs.

Inputs assumed to be available. ..
... early in clock cycle.

[+ clk

[4- start

M-

. Cycle i Cycle :

0

1

Cycle :

2

Cycle :

3

[4 amt

unsh-

[ifted

cnt

ready]

shifted £1]

384 Xg

shift_It_seq

sf

=

shift_fixed

unshifted

shifted \I

shifted

shifted

i

Junshifted

cnt

|

[

clk

cnt

ready

|
[

Sequential Shifter

Timing.

2: At positive edge:
cnt initialized to amt.

shifted initialized to unshifted.

[+ clk

[4- start

M

. Cycle i Cycle :

0

1

Cycle :

2

Cycle :

3

e

[4 amt

unsh-

[ifted

cnt

ready]

shifted £1]

384 Xg

shift_It_seq

sf

=

shift_fixed

unshifted

shifted \I

shifted

shifted

i

Junshifted

cnt

|

[

clk

cnt

ready

|
[

Sequential Shifter

Timing.

3: Early in Cycle 1:

ready goes to zero.

[+ clk

[4- start

M

. Cycle i Cycle :

0

1

Cycle :

2

Cycle :

3

e

[4 amt

unsh-

[ifted

cnt

ready]

shifted £1]

384 Xg

shift_It_seq

sf

=

shift_fixed

unshifted

shifted \I

shifted

shifted

i

Junshifted

cnt

|

[

clk

cnt

ready

|
[

Sequential Shifter

Timing.

4: During cycles 1 and 2:

New value of count is com-
puted, “shift” performed.

[+ clk

[4- start

M

. Cycle i Cycle :

0

1

Cycle :

2

Cycle :

3

e

[4 amt

unsh-

[ifted

cnt

ready]

shifted £1]

384 Xg

shift_It_seq

sf

=

shift_fixed

unshifted

shifted \I

shifted

shifted

i

Junshifted

cnt

|

[

clk

cnt

ready

|
[

Sequential Shifter

Timing.

5: Beginning of cycle 3:

Ready signal set to 1.

[+ clk

[4- start

M

. Cycle i Cycle :

0

1

Cycle :

2

Cycle :

3

e

[4 amt

unsh-

[ifted

cnt

ready]

shifted £1]

384 Xg

shift_It_seq

sf

=

shift_fixed

unshifted

shifted \I

shifted

shifted

i

Junshifted

cnt

|

[

clk

cnt

ready

|
[

Sequential Shifter

Notes about behavior.
Start signal must be stable at
positive edge.

Inputs required to be avail-
able early in clock cycle.

Result available at beginning
of clock cycle.

Ready signal available early
in clock cycle.

[+ clk

[4- start

M

. Cycle i Cycle :

0

1

Cycle :

2

Cycle :

3

RO,

[4 amt

unsh-

[ifted

cnt

ready]

shifted £1]

i

=

shift_It_seq

sf

shift_fixed

unshifted

shifted \I

shifted

shifted

Junshifted

cnt

| i

[[

clk

ready

|
[

Sequential Shifter

Sequential Shifter Verilog

module shift_It_seq #(int wid_lg = 4, int wid = 1 << wid_lg)
(output logic [wid-1:0] shifted,
input [wid-1:0] unshifted,
input start, input clk);

output uwire ready,
input [wid_1g-1:0] amt,

uwire [wid-1:0] sf_out;

shift_fixed #(wid_1g,1) sf(sf_out, shifted, 1’bl); // Fixed Shifter
logic [wid_1g-1:0] cnt;

always_ff ©(posedge clk)
if (start == 1) begin

shifted = unshifted; // Load a new item to shift

cnt = amt; // .. and initialize amount.

end else if (cnt > 0) begin

shifted = sf_out; // Shift by one more bit

cnt——; // .. and update count.

end

assign ready = cnt == 0; // Set ready to 1 when count is zero.

endmodule

shift_It_seq
sf
shift_fixed
unshifted 8 g
£ i
shifted] < <
e v M
|
1
W -
unshifted
|
5 J
C
O
cnt
H ” 2
c]
]
| .
M
|

Sequential Shifter

Inferred Hardware, No Optimization

module shift It seq

#(int wid_lg = 4, int wid = 1 << wid_1lg)

(output logic [wid-1:0] shifted,

output uwire ready,

input [wid-1:0] unshifted,

input [wid_1g-1:0] amt,

input start, input clk);

uwire [wid-1:0]

sf_out;

shift_fixed #(wid_lg,1) sf(sf_out,shifted,

logic [wid_1g-1:0] cnt;

always_ff ©(posedge clk)
if (start == 1) begin

shifted = unshifted;
cnt = amt;

end else if (cnt > 0) begin

shifted = sf_out;
cnt——;

end else begin shifted = shifted;

assign ready = cnt == O;

endmodule

cnt

1);

cnt; end

shift_It_seq
sf
shift_fixed
wid_Ig=4
amt=1
| unshifted sf_out
shifted [
1'd1 shift
cnt >0
, >
I__Istart 4'd0 start
L]
shifted | Y |& o °
N |5 & £
< L
J/' G tss
H 5
unshifted
/\
]
cnt &_—“
5y
-
t :@ﬂ] JmE:
am 7 — —
ax 4dl /J cnt
/\
H ! >
clk E
]
|

L

Sequential Shifter

Inferred Hardware, No Optimization

(mm|
L

sf

1'd1T

shift_fixed
wid_lg=4
amt=1

unshifted
shifted

shift

start

shift_It_seq

4'd0

(mm|

2

shifted

shifted

(mm|

“unshifted

amt

L

cnt

cnt

cnt

cnt

shifted

(mm|
L

__/<—|

cnt

clk

ready

=

L

roo —

L

[+ clk

[start

. Cycle :

o 1

Cycle :

2

o

Cycle :

Cycle :

[+ amt

1)

unsh-

= ifted

B

cnt

X

%

%

ready]

0 N2
6}

1
T
@

o
@

shifted 1

384 Xg

Sequential Shifter

Pay Attention To

Setup delay: in-
puts to registers.

Operation delay:
register to regis-
ter.

s
L

sf

1'd1T

shift_fixed
wid_lg=4
amt=1

unshifted
shifted

shift

sf out

start

L

shift_It_seq

4'd0

Output delay: gen-

eration of the reaolyr

2

shifted

shifted

signal.

(mm

||
unshifted

amt

cnt

4'dl

L

‘Oﬂ

cnt

shifted

cnt

N

cnt

(mm
L

clk

ready

=4

L

L

[+ clk

[start

. Cycle :

0

Cycle :

1

Cycle :

2

o

M

3

Cycle :

[+ amt

2

unsh-

[ifted

@\

cnt

ready]

shifted 1

Sequential Shifter
Streamlining and Optimization
Streamline hardware illustration to make it readable.

Include optimizations we hope synthesis program will make.

Optimization Opportunities
Use an enable for registers.
Shifter is just a bit renaming plus one zero.

The three operations on cnt, ¢ > 0, c — 1, and ¢ ==
... can all be done by the same logic.

Sequential Shifter

shift_It_seq
sf
shift_fixed
wid Ig=4
amt=1
| unshifted sf out
shifted [~
1'dl shift
cnt >0
>
start 4'd0
= _ start =
shifted | Y g¢ 2 2
ﬂ i £ <
PR "5
tH J
unshifted
A
]
cnt r“ r
C
i -
t :@ﬂ] EE
am 7 —
! 4dl J cnt
A
B ' >
clk g
) 24
4'd0 —_ H

shift_It_seq wid_Ig=4
decr
v v=0
start V-1
= start 'c
14:0 o ¢ - 9
/ E
7 sf out b=
S
1'd0 _Ib \l v i
tH - J
unshifted
A
I
= r
b 74&‘ en
O
amt ||
ma J cnt
A
o ' >
clk o
]
1
-
|

Sequential Shifter

Sequential Shifter with Multiple Shifters

For example: Shift x by 9 bits.

shift_It seq_d num_shifters=2
Use a sequential shifter with 4-bit and 1-bit shifters.
sfl sf4
Shift by 4-bits twice and by 1-bit once. 3@@;@@‘1 fvty_f,t_c,;fl,f(ed
amt=1 amt=4
3 g
L |5 shifted | |5 shifted £ E
Features g g —LP = <
shift shift []
o | B J
The cnt register divided into multiple segments. unshifte A
]
Fixed shifter may or may not shift. 1
j <
amt 4'dl -
— J | Ladent
H
ol O J
#d1 z
J _./\ cnt g
:
H]

Sequential Shifter
Performance Analysis and Design Optimization

Goal: Choose the best shifter for some larger design.

	Sequential Logic is Harder
	Inference of Registers
	Genus' Generic Flip-Flop
	Review of Inference and Technology Mapping
	Classroom Hardware Diagrams
	Edge-Triggered Flip-Flop Inference
	Inference Review
	Rules

	Coding Common Edge-Triggered Registers
	Simple
	With Enable

	Simple Example Circuits: Clocks
	Clock with Reset
	Clock with Threshold
	Version One
	Version One's Problems
	Faster Version
	Alternative Threshold Behavior

	Sequential Shifter

