
LSU EE 4755 Homework 3 Solution Due: 23 October 2019

Problem 1: Appearing below is a module excerpted from the solution to Homework 1. Compute
the cost and delay of this module using the simple model under the following assumptions:

• The inputs arrive at t = 0. Don’t assume that any bit is early or late, they all arrive at
exactly t = 0.

• A ripple adder will be used to implement addition.

• Apply obvious optimizations. In particular, don’t use a BFA if a BHA would suffice. And
only use a BHA if that is needed.

• Don’t overlook the fact that one of the shifter inputs is a constant.

Show the cost and delay in terms of wa and wb, but use symbol a for wa and b for wb. For
example, “The cost is (a + b)9 uc and the delay is (a + b)2 ut.” (Those answers assume that BFAs
are used for the entire module, which is wrong.)

The simple model slides (AOTW) don’t show the cost and delay of a BHA, so work that out
yourselves.

module mult_piece
#(int wa = 16, int wb = 16, int wp = wa + wb,

int wn = wa / 2, int wx = wb + wn)

(output uwire [wp:1] prod,

input uwire [wx:1] prod_lo, prod_hi);

assign prod = prod_lo + (prod_hi << wn);

endmodule

Short answer: Cost: [9b + 3a
2] uc , Delay: [2 + 2b + a

2] ut .

Long answer: Because prod hi is shifted and because prod lo and prod hi are the same width the adder can

be broken into three regions: an a/2-bit low region consisting of the low a/2 bits of prod lo, a b-bit middle region

consisting of the high b bits of prod lo and the low b bits of prod hi, and an a/2-bit region consisting of the high

a/2 bits of prod hi.

There is no hardware at all for the low region. The middle region consists of b binary full adders, and the high

region consists of a/2 binary half adders. (The high region has to handle the carry out from the middle region.)

Under the simple model a BFA cost 9 uc and in a w-bit ripple configuration has a delay of [2 + 2w] ut. A BHA

can be derived from a BFA by setting the a or b input to logic zero and then simplifying. Such a BHA would have a cost

of 3 uc per bit and a delay of 1 ut per bit in a ripple configuration.

The total cost is then [9b + 3a
2] uc and the delay is [2 + 2b + a

2] ut.

There’s another problem on the next page!

1

https://www.ece.lsu.edu/koppel/v/

Problem 2: A w-bit multiplier needs to add together w partial products using w − 1 adders. A
näıve timing analysis of a non-tree ripple adder implementation would compute a delay of w(2 ×
2w + 2) = (4w2 + w) ut for the 2w-bit product using the simple model and ignoring ripple-unit
cascading. As we should know 4w2 is not a good term to have in an expression for time. The goal
of this problem is to see how the tree multiplier compares to this näıve timing analysis.

Appearing below is the Bonus Solution to Homework 1 in which a single mult_tree module
is used rather than separate modules mult16_tree, mult8_tree, etc. Also shown is a module,
my_module, that instantiates the mult_tree. Also shown a page or two ahead is the diagram from
Homework 1. You may want to use this to help work out the solution to this problem.

Analyze the cost and performance of my_module as described below. When computing the
cost and performance don’t forget to account for the full elaboration, not just the top level. For
example, my_module with w=4 consists of one mult_tree at w=4 and two mult_tree modules at
w=2, and four mult_tree modules at w=1.

module mult_tree
#(int wa = 16, int wb = 16, int wp = wa + wb)

(output logic [wp:1] prod,

input uwire [wa:1] a,

input uwire [wb:1] b);

if (wa == 1) begin

assign prod = a ? b : 0;

// Equivalent to: prod = a * b;

end else begin

// Split a in half and recursively instantiate a module for each half.

localparam int wn = wa / 2;

localparam int wx = wb + wn;

uwire [wx:1] prod_lo, prod_hi;

mult_tree #(wn,wb) mlo(prod_lo, a[wn:1], b);

mult_tree #(wn,wb) mhi(prod_hi, a[wa:wn+1], b);

// Combine the partial products.

always_comb prod = prod_lo + (prod_hi << wn);

end

endmodule

module my_module
#(int w = 8, int wp = 2 * w)

(output uwire [wp-1:0] p,

input uwire [w-1:0] x, y);

mult_tree #(w,w) mt1(p,x,y);
endmodule

(a) Compute the cost of my_module using the same assumptions as in Problem 1. The cost must

2

be in terms of w. It’s okay, indeed encouraged, to use sample values like w = 16 when working
out the problem, but once you have it figured out give the answer in terms of w. (If you have not
solved Problem 1 then use the incorrect sample answers provided in Problem 1.)

The following identity may be helpful:
∑m−1

i=0 2i = 2m − 1. In such a summation i might
indicate the level of recursion and 2i might indicate the number of modules at that recursion level.
For the top level of the recursion i = 0.

Let j denote the recursion level such that a = 2j , and note that j starts at lgw with the initial instantiation of

mult-tree (the one made by my-module) and ends at j = 0, the terminal case. At level j there are a total of w/2j

instances. For the terminal case, j = 0 and a = 1, mult-tree produces just a mux, which itself will be optimized to

b AND gates. There will be w/20 instances for j = 0, so their total cost will be w2 uc, after setting b = w.

The j > 0 levels consist of binary full and half adders. Each instance has about w BFAs and a/2 = 2j−1 BHAs.

Let cf denote the per-bit cost of a BFA and ch denote the per-bit cost of a BHA. By the simple model cf = 9 uc and

ch = 3 ut. (In the BHA the carry out can be used to compute the sum, reducing the number of additional gates for the

XOR to 2.) Then the total cost of the adders is

lgw∑
j=1

w

2j
(
wcf + 2j−1ch

)
=w

lgw∑
j=1

(wcf
2j

+
ch
2

)

=w2

lgw∑
j=1

cf
2j

+
w

2

lgw∑
j=1

ch

=w2

(
1 − 1

w

)
cf +

w

2
(lgw)ch

.

(Note that
∑lgw

j=1 2−j = (1 − 1/w).) The total overall cost is

w2 uc + w2

(
1 − 1

w

)
cf +

w

2
(lgw)ch

=

[
10w2 − 9w +

3w

2
(lgw)

]
uc

An important point to note is that the cost is proportional to w2. That should not be surprising because we know

that to multiply two w-bit quantities we need w − 1 adders, each costing about wcf .

(b) Compute the delay of the multiplier using a simplifying assumption similar to the one used in
Problem 1: when computing the delay of prod = prod_lo + (prod_hi << wn) assume that
all bits for prod_lo and prod_hi arrive at the same time and that all bits of prod are sent to the
outputs at the same time. (Don’t like simplifying assumptions? The next subproblem is for you!)

Show your answer for w=8 and as an expression in terms of w. Don’t forget to consider the
entire elaboration, not just the top-level module.

The launch point starts at j = 0 (the terminal case), which depends only on the inputs to my-module, a and b.

The delay is just 1 ut.

Level j > 0 has an adder consisting of w BFAs and 2j−1 BHAs. The total delay through that is [2(w − 1) +
2j−1] ut, where the delay through a 2j−1-bit BHA is 2j−1 ut. The total delay including the AND gates is

3

1 +

lgw∑
j=1

(
2(w − 1) + 2j−1

) ut

= [1 + 2(w − 1)(lgw) + w − 1] ut

= [w + 2(w − 1)(lgw)] ut

≈ 2w lgw ut

The dominant term is 2w lgw which is not as bad as a linear connection of adders which would have a delay of

≈ 2w2 ut under similar assumptions.

(c) Compute the delay of the multiplier without the simplifying assumption. That is, account for
the fact that the less-significant bits of mult_tree will be ready before the more-significant bits.

Show your answer for w=8 and as an expression in terms of w. Don’t forget to consider the
entire elaboration, not just the top-level module.

At level j the least significant BFA (which could actually be a BHA, but we’ll keep it simple) is connected to bit

2j−1 of prod-lo and bit zero of prod-hi. Since level j is waiting for 2j−1 to be ready, the next level, j + 1, must

be waiting for bit 2j . Therefore for level j we need to compute the delay though 2j−1 + 1 BFAs: stating at the least

significant BFA (bit position 2j−1) and ending at the BFA computing bit 2j . The delay for w bits for a ripple adder

under the simple model is 2(w + 1) ut, so the delay at level j before j + 1 can start is 2((2j−1 + 1) + 1) = 2j + 4.

For level j = 0 the delay is 1 ut (an AND gate). For level j = lgw we need to add on the remaining bits in the

ripple adder: w/2 − 1 BFA delays and w/2 BHA delays.

The total delay is: 1 +

lgw∑
j=1

2j + 4

+
(w

2
− 1
)

2 +
w

2

 ut

=
[
1 + 2(2w − 1) + 4(lgw) +

(w
2
− 1
)

2 +
w

2

]
ut

= [5.5w + 4(lgw) − 1] ut

Useful diagram on next page.

4

Use the diagram below to help work out solutions.

mult2

16

1:0

mult2

16

3:2

<<
2

+

mult2

16

5:4

mult2

16

7:6

<<
2

+
<<

4

+

mult2

16

9:8

mult2

16

11:10

<<
2

+

mult2

16

13:12

mult2

16

15:14

<<
2

+
<<

4

+
<<

8

+

16b by 4b

16b by 8b

mult16

a

b

p
ro
d

16

16

32

There are four of these.

T
h
e
re

 a
re

 tw
o
 o

f th
e
se

.

5

	Problem 1
	Problem 2
	Part char 97
	Part char 98
	Part char 99

