
LSU EE 4755 Homework 1 Solution Due: 18 September 2019

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2019/hw01.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw01.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Homework Overview
In class you were told that for common operations, such as shifting, addition, and multiplication,
it’s better to use Verilog operators in procedural code than to re-invent the wheel by writing
Verilog to implement those operations. This point was made when covering the shift module in the
introductory lectures. For example, if you need a shifter it’s better to just use the shift operator:
module shift_right_operator
( output uwire [15:0] shifted,

input uwire [15:0] unshifted, input uwire [3:0] amt );

assign shifted = unshifted >> amt;

endmodule

than to write code for your own shifter:
module shift_right_logarithmic
( output uwire [15:0] sh, input uwire [15:0] s0, input uwire [3:0] amt );

uwire [15:0] s1, s2, s3;

mux2 st0( s1, amt[0], s0, {1’b0, s0[15:1]} );

mux2 st1( s2, amt[1], s1, {2’b0, s1[15:2]} );

mux2 st2( s3, amt[2], s2, {4’b0, s2[15:4]} );

mux2 st3( sh, amt[3], s3, {8’b0, s3[15:8]} );

endmodule

module mux2( output uwire [15:0] x,

input uwire select, input uwire [15:0] a0, a1 );

assign x = select ? a1 : a0;

endmodule

The reason for showing the implementation of shifters, and other common operations, was to
teach general design concepts using operations that you should be familiar with. That will be the
approach in this homework, in which a multiplier is to be implemented.

Testbench Code
The testbench for this assignment, which can be run when visiting the file in Emacs in a properly
set-up account by pressing F9 , tests the multiply modules. Modules mult_operator and mult16

should pass, mult16_tree awaits your solution. A sample of the end of the testbench output
appears below:

Starting testbench...

Error in mult16_tree test 0: xxxxxxxx != 00000001 (correct)

Error in mult16_tree test 1: xxxxxxxx != 00000002 (correct)

Error in mult16_tree test 2: xxxxxxxx != 00000020 (correct)

Error in mult16_tree test 3: xxxxxxxx != 00000020 (correct)

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2019/hw01.v.html
https://www.ece.lsu.edu/koppel/v/proc.html


Error in mult16_tree test 4: xxxxxxxx != 139dff24 (correct)

Error in mult16_tree test 5: xxxxxxxx != 4839cb7b (correct)

Mut mult_operator , 0 errors (0.0% of tests)

Mut mult16_flat , 0 errors (0.0% of tests)

Mut mult16_tree , 1000 errors (100.0% of tests)

Memory Usage - 38.6M program + 154.6M data = 193.2M total

CPU Usage - 0.0s system + 0.0s user = 0.1s total (70.4% cpu)

Simulation complete via $finish(2) at time 10 US + 0

./hw01.v:218 $finish(2);

ncsim> exit

A count of the number of tests and errors is shown for three modules. The testbench shows
the first six errors it finds on each module. To see more than six modify the testbench (search
for err_limit). In the output above the testbench is showing that the module outputs are x

(uninitialized) which of course don’t match the expected outputs.
Use Simvision to debug your modules. Feel free to modify the testbench so that it presents

inputs that facilitate debugging.

Synthesis
The synthesis script, syn.tcl, will synthesize the three modules each with two delay targets, an
easy 10 ns and a un-achievable 0.1 ns. If the module doesn’t synthesize −.001 s is shown for the
delay. The script is run using the shell command genus -files syn.tcl, which invokes Cadence
Genus.

The synthesis script shows area (cost), delay, and the delay target in a neat table. Additional
output of the synthesis program is written to file spew.log. Sample synthesis script output appears
below:

Problem 1 on next page.

2



mult2

16

1:0

mult2

16

3:2

<<
2

+

mult2

16

5:4

mult2

16

7:6

<<
2

+
<<

4

+

mult2

16

9:8

mult2

16

11:10

<<
2

+

mult2

16

13:12

mult2

16

15:14

<<
2

+
<<

4

+
<<

8

+

16b by 4b

16b by 8b

mult16

a

b

p
ro
d

16

16

32

There are four of these.

T
h
e
re

 a
re

 tw
o
 o

f th
e
se

.

Problem 1: The illustration to the
right shows a sketch of a multiplier,
mult16, with two 16-bit inputs and a
32-bit output. The multiplier is con-
structed from mult2 modules, shifters
(<<), and adders. The illustrated mod-
ule is similar to the multiplier in
mult16_flat in hw01.v. The mult2

modules have two inputs, one is two
bits, the other is 16 bits. Each input
holds an unsigned integer. The out-
put, 18 bits, is the product of the two
inputs. Notice that each mult2 module
is connected to two bits of a and all bits
of b. The outputs of the mult2 mod-
ules are shifted and added together in
such a way that prod is the correct
product of a and b.

There are two parts of mult16 sur-
rounded by green boxes. The upper
one, labeled 16b by 4b, contains two
mult2 modules. The label is explain-
ing that the boxed material multiplies
a 16-bit number by a 4-bit number. A
similar box could have been put around
the next pair of mult2 modules, etc.
The hardware within each of these four boxes would be identical. (The bit slices at the upper
mult2 inputs, such as 1:0 and 5:4 are different, but that can be taken care of outside the green
box.) Think about the poor soul who might have just typed in all the Verilog for mult16 and then
suddenly realizes this. All that person would have had to do would be to code one module, call it
mult4_tree, and just instantiate it four times. Here is an almost empty version of mult4_tree:

module mult4_tree
( output uwire [0:0] prod, // Need to change output size.

input uwire [3:0] a, input uwire [15:0] b );

mult2 mlo( /* finish */ );

mult2 mhi( /* finish */ );

endmodule

Alert students might suspect that we don’t actually instantiate mult4_tree four times because
the 16b by 8b section itself could be a module which would contain only two instantiations of
mult4_tree. That would be correct.

Modify modules mult16_tree, mult8_tree, and mult4_tree found in hw01.v so that they
implement the multiplier described above. Module mult16_tree must instantiate exactly two
mult8_tree modules, module mult8_tree must instantiate exactly two mult4_tree modules, and

3



mult4_tree must use the two mult2 modules that are already instantiated (but with the ports
missing).

In each module use implicit structural code or behavioral code to combine the outputs of that
module’s two instantiated modules. It might be helpful to look at mult16_flat for examples of
instantiation and implicit procedural code.

Start with module mult16_tree. You can test your changes to mult16_tree by putting
placeholder code in mult8_tree, such as assign prod = a*b;. Don’t forget to change the port
sizes on mult8_tree to what they should be based on the diagram.

Once the testbench reports zero errors move the placeholder to mult4_tree and complete
mult8_tree. Continue until the three modules are finished.

Some of the port sizes are set to 1 bit, [0:0]. Those are placeholders, change those to the
correct sizes, but no larger. Credit will be deducted for oversized ports, especially if all ports are
made 32 bits.

Pay attention to port-size warnings when running the simulator.
The solution Verilog code has been placed in the assignment directory, and on the Web at

https://www.ece.lsu.edu/koppel/v/2019/hw01-sol.v.html.

To solve the problem one needed to see that a was split between the two modules, mlo and mhi, but that a

complete version of b was used in each. Another important element to work out was the size of the product. When

an x-bit unsigned integer is multiplied by a y-bit unsigned integer, the maximum sized product is x + y bits. So the

mult8 tree output, and the wire that connects to it, must be 8 + 16 = 24 bits. Therefore in the solution (shown

below) prod lo and prod hi are 24 bits, as is the output of the mult8 tree module.

module mult16_tree
#( int wa = 16, int wb = 16, int wp = wa + wb )

( output uwire [31:0] prod, input uwire [15:0] a, input uwire [15:0] b );

/// SOLUTION

// Declare properly-sized connections to mult8_tree outputs.

uwire [23:0] prod_lo, prod_hi;

// Instantiate two mult8_tree multipliers, each handles 8 bits of a.

mult8_tree mlo( prod_lo, a[7:0], b);

mult8_tree mhi( prod_hi, a[15:8], b);

// Compute the full product using the two partial products.

assign prod = prod_lo + ( prod_hi << 8 );

endmodule

module mult8_tree
( output uwire [23:0] prod,

input uwire [7:0] a, input uwire [15:0] b );

/// SOLUTION
uwire [19:0] prod_lo, prod_hi;

mult4_tree mlo( prod_lo, a[3:0], b);

mult4_tree mhi( prod_hi, a[7:4], b);

assign prod = prod_lo + ( prod_hi << 4 );

endmodule

module mult4_tree

4

https://www.ece.lsu.edu/koppel/v/2019/hw01-sol.v.html


( output uwire [19:0] prod,

input uwire [3:0] a, input uwire [15:0] b );

/// SOLUTION
uwire [17:0] prod_lo, prod_hi;

mult2 mlo( prod_lo, a[1:0], b);

mult2 mhi( prod_hi, a[3:2], b);

assign prod = prod_lo + ( prod_hi << 2 );

endmodule

Problem 2: The synthesis script will synthesize mult16_tree from Problem 1, plus two already
working modules, mult16_flat and mult_operator, which just uses the multiply operator.

If the synthesis program were perfect then all three modules would have the same cost and
delay because they each do exactly the same thing (multiply) and so the optimization algorithms
would have found the same lowest-cost circuit from each one. Spoiler alert: Genus is not perfect.

Guess which module you think will be the fastest or least expensive, and explain why. Then
run the synthesis script and comment on whether the results met your expectations.

Solution on next page.

5



I would expect that mult operator would be fastest with the 0.1 ns delay target and least expensive with the

10 ns target because integer multiplication is a common operation and so the synthesis program should have a well-tuned

multiply module in its library for situations such as these.

If optimization was not very good, then I’d expect mult16 flat to have a longer delay than mult16 tree

because of the expression adding together the partial products:

assign prod = prod00 + ( prod02 << 2 ) + ( prod04 << 4 ) + ( prod06 << 6 ) + ( prod08 <<

8 ) + ( prod10 << 10 ) + ( prod12 << 12 ) + ( prod14 << 14 );

This expression has seven additions. If the order of additions follows the expression above then each addition after

the first will not have its operands ready until the previous addition finishes. Therefore the critical path passes through

seven additions. In the tree version the critical pass passes through just three additions, and so would be faster.

Modern optimizers, however, should be able to re-associate the expression to reduce the critical path. For example,

internally the optimizer might convert the expression into:

assign prod =

(

( ( prod00 ) + ( prod02 << 2 ) )

+

( ( prod04 << 4 ) + ( prod06 << 6 ) )

)

+

(

( ( prod08 << 8 ) + ( prod10 << 10 ) )

+

( ( prod12 << 12 ) + ( prod14 << 14 ) )

);

In the expression above the four inner additions (the ones where the plus sign is in the middle of the line) can start

at the same time, when they finish two more additions can start and proceed in parallel, followed by the last addition in

the center of the expression.

Below is the actual synthesis output:

Module Name Area Delay Delay

Actual Target

mult_operator 235272 9.266 10.000 ns

mult16_flat 403519 9.982 10.000 ns

mult16_tree 294419 8.861 10.000 ns

mult_tree 240616 7.934 10.000 ns

mult_operator_1 491053 3.103 0.100 ns

mult16_flat_1 817229 4.502 0.100 ns

mult16_tree_1 590500 3.360 0.100 ns

mult_tree_3 510150 3.150 0.100 ns

The results indicate that optimizers are not as good as I thought. As expected, the library routine, and so

mult operator was least expensive. But mult tree was almost as good, and for some reason was better than

mult16 tree, perhaps because it does not use a multiplier in its terminal case. For delay the library routine also wins

out and our tree-structured modules outperform the flat ones.

6


	Problem 0
	Problem 1
	Problem 2

