/// EE 4755 - Digital Design Using HDLs // /// Introductory Review ////////////////////////////////////////////////////////////////////////////// /// This Note/Demo Set /// Prerequisite // // Some familiarity with Verilog. // Familiarity with digital design. /// Goal // // Refresh your memory of Verilog, Verilog simulation, and synthesis. // Exposure to some SystemVerilog features. ////////////////////////////////////////////////////////////////////////////// /// References // /// Web page with references for this class: // https://www.ece.lsu.edu/v/ref.html /// :SV12: SystemVerilog -- IEEE Std 1800-2017 // https://ieeexplore.ieee.org/document/8299595/ // // The current Verilog language standard. // The primary Verilog reference for this course. /// :BV3: Brown & Vranesic, Fundamentals of Digital Logic with Verilog, 3rd Ed. // // The text used in LSU EE 2740. // Includes material on logic design and elementary Verilog. ////////////////////////////////////////////////////////////////////////////// /// Logical Right Shifter // /// Logical Right Shifter Informal Description // // This should be something everyone has seen before. // // There are two inputs, amt (amount) and din (data in) // There is one output: dout (data out) // The value at dout is set to the value at din right-shifted by amt bits. // Zeros are placed in vacated positions. // // // :Example: Behavior of right shift. // // Input - amt : 2 // Input - din : 00111000 <-- Shifted .. // Output- dout : 00001110 <-- .. by two bits. // // Input - amt : 1 // Input - din : 01101001 <-- Shifted .. // Output- dout : 00110100 <-- .. by one bit. // // Input - amt : 3 // Input - din : 01101001 <-- Shifted // Output- dout : 00001101 <-- .. by three bits. /// Terminology // // w - Number of bits in din and dout. /// Things to Review and Think About // // What should the hardware look like? // // How can we describe the shifter in Verilog? // // What is the relationship between the Verilog description of the // shifter and the hardware that is synthesized? /// How to Implement a Shifter in Hardware // // // Brute Force Method (Usually not a good idea) // // Use a multiplexor with w inputs, each input is w bits wide. // Cost is about 3w² before optimization. // // With Sample Values // // // Efficient Method, The Logarithmic Shifter // // Use lg(w) multiplexors, each with two w-bit inputs. // Cost is about 6 w lg(w). ////////////////////////////////////////////////////////////////////////////// /// Logical Right Shifter Implementations // Appearing below are several different ways of writing a logical // right shift module in Verilog. All of them are correct but when // coding style is taken into account some are better than others. // // Coding style is important because the cost of designing a system // includes the time it takes engineers to read HDL descriptions // and to find bugs in HDL. // :Example: Simple Behavioral Shifter Description // // This description is good for an ordinary shifter. We are relying on // the synthesis program to do a good job with the logical right shift // operator, >>. // module shift_right_operator ( output uwire [15:0] shifted, input uwire [15:0] unshifted, input uwire [3:0] amt ); // Note: Reasonable code. We expect synthesis prog to DTRT here. // assign shifted = unshifted >> amt; endmodule // :Example: Unnecessarily Complicated Behavioral Shifter Description // // This description is correct but unnecessarily complicated and so // should not be used. It is also not synthesizable for reasons to be // covered later. (If you must know: it's because the number of // iterations in the loops depends upon a non-constant value, the // module amt input.) // module shift_right_behavioral ( output logic [15:0] shifted, input uwire [15:0] unshifted, input uwire [3:0] amt ); localparam int width = 16; always_comb begin // Correct, but more complicated than it needs to be. Also, // cannot be synthesized for reasons that we'll cover later. // for ( int i=0; i<width-amt; i++ ) shifted[i] = unshifted[i+amt]; for ( int i=width-amt; i<width; i++ ) shifted[i] = 0; end endmodule // :Example: Unnecessarily Complicated Behavioral Shifter Description // // This description is correct but unnecessarily complicated and so // should not be used. // module shift_right_mux_b ( output logic [15:0] shifted, input uwire [15:0] unshifted, input uwire [3:0] amt ); always_comb begin // Correct, but susceptible to accidental changes. Loose bits sink chips. // case ( amt ) 0: shifted = unshifted; 1: shifted = { 1'b0, unshifted[15:1] }; 2: shifted = { 2'b0, unshifted[15:2] }; 3: shifted = { 3'b0, unshifted[15:3] }; 4: shifted = { 4'b0, unshifted[15:4] }; 5: shifted = { 5'b0, unshifted[15:5] }; 6: shifted = { 6'b0, unshifted[15:6] }; 7: shifted = { 7'b0, unshifted[15:7] }; 8: shifted = { 8'b0, unshifted[15:8] }; 9: shifted = { 9'b0, unshifted[15:9] }; 10: shifted = { 10'b0, unshifted[15:10] }; 11: shifted = { 11'b0, unshifted[15:11] }; 12: shifted = { 12'b0, unshifted[15:12] }; 13: shifted = { 13'b0, unshifted[15:13] }; 14: shifted = { 14'b0, unshifted[15:14] }; 15: shifted = { 15'b0, unshifted[15:15] }; endcase end endmodule // :Example: Unnecessarily Complicated Structural Shifter Description // // This description is correct but unnecessarily complicated and so // should not be used. // module shift_right_mux_s ( output uwire [15:0] shifted, input uwire [15:0] unshifted, input uwire [3:0] amt ); // Correct, but susceptible to accidental changes. // mux16 m( shifted, amt, unshifted, { 1'b0, unshifted[15:1] }, { 2'b0, unshifted[15:2] }, { 3'b0, unshifted[15:3] }, { 4'b0, unshifted[15:4] }, { 5'b0, unshifted[15:5] }, { 6'b0, unshifted[15:6] }, { 7'b0, unshifted[15:7] }, { 8'b0, unshifted[15:8] }, { 9'b0, unshifted[15:9] }, { 10'b0, unshifted[15:10] }, { 11'b0, unshifted[15:11] }, { 12'b0, unshifted[15:12] }, { 13'b0, unshifted[15:13] }, { 14'b0, unshifted[15:14] }, { 15'b0, unshifted[15:15] } ); endmodule module mux16 ( output logic [15:0] x, input uwire [3:0] select, input uwire [15:0] a0, a1, a2, a3, a4, a5, a6, a7, input uwire [15:0] a8, a9, a10, a11, a12, a13, a14, a15 ); // Correct, but susceptible to accidental changes. // always_comb case ( select ) 0: x = a0; 1: x = a1; 2: x = a2; 3: x = a3; 4: x = a4; 5: x = a5; 6: x = a6; 7: x = a7; 8: x = a8; 9: x = a9; 10: x = a10; 11: x = a11; 12: x = a12; 13: x = a13; 14: x = a14; 15: x = a15; endcase endmodule // :Example: Structural Description Of Logarithmic Shifter // // This is a structural description of a particular way of building a // w-bit shifter, one using lg w stages, each stage consisting of a // multiplexor. Though it is far simpler than the 16-input mux // variations, it is still more complicated than it needs to be. A // better solution would use what's called a generate loop. // module shift_right_logarithmic ( output uwire [15:0] sh, input uwire [15:0] s0, input uwire [3:0] amt ); uwire [15:0] s1, s2, s3; // Shift by either 0 or 1 bits. // mux2 st0( s1, amt[0], s0, {1'b0, s0[15:1]} ); // Shift by either 0 or 2 bits. // mux2 st1( s2, amt[1], s1, {2'b0, s1[15:2]} ); // Shift by either 0 or 4 bits. // mux2 st2( s3, amt[2], s2, {4'b0, s2[15:4]} ); // Shift by either 0 or 8 bits. // mux2 st3( sh, amt[3], s3, {8'b0, s3[15:8]} ); endmodule module mux2 ( output uwire [15:0] x, input uwire select, input uwire [15:0] a0, a1 ); assign x = select ? a1 : a0; endmodule ////////////////////////////////////////////////////////////////////////////// /// Review Concepts // /// Module declaration /// Variable v. Net /// Continuous assignment. /// always, initial /// Module Instantiation // Simulation // Testbenches // Synthesis // Synthesis optimization goals. // Scripting ////////////////////////////////////////////////////////////////////////////// /// Synthesis // /// Synthesis Software // // Cadence Genus // // /// Elaboration [of a Top-Level Module] // // The process of generating and gathering all the HDL needed for // the top-level module. // // Start with some top-level module (shift_right_operator) .. // .. gather instantiated modules .. // .. and perform elaboration on them. // // For those who know what "generate statements" are: // Generate statements are executed during elaboration. /// Synthesis Target // // The kind of thing you want to make. For example, // // ASIC // FPGA. /// Inference // // Figuring out what hardware to use for a given piece of Verilog. /// Mapping [of one piece of hardware to another] // // The replacing one piece of hardware (Verilog module or primitive) // with another. /// Generic Target /// Mapped (To Technology) Target /// Area and Timing /// Design Constraints /// Scripting /// Commands for Genus // read_hdl shifter.v // elaborate shift_right_operator // gui_show // set_db syn_global_effort high // Effort levels: none | low | medium | high | express // vcd design:shift_right_operator // create_clock -name clk -period 1 // Units are nanoseconds // set_input_delay -clock clk 0.0 [all_inputs] // set_output_delay -clock clk 0.0 [all_outputs] // syn_gen // syn_map // syn_opt // report area // report timing ////////////////////////////////////////////////////////////////////////////// /// Testbench Code // // The code below instantiates shift_right1 and shift_right_operator, // provides test inputs and verifies the outputs. // // cadence translate_off module testbench(); uwire logic [15:0] sout1, sout2; logic [15:0] sin; logic [3:0] amt; shift_right_behavioral my_sr1(sout1, sin, amt); shift_right_logarithmic my_sr2(sout2, sin, amt); // Width of shifters' input and output. // The parameter is used only by this testbench. // localparam int width = 16; // // To keep things simple the shifter modules themselves are written // with a hardcoded width of 16 bits. That's bad style since // changing the width would be tedious and error prone. (The // shifter modules could have used a parameter to specify the width // or a user-defined type.) // Provide names for the modules for use in error messages. // localparam string name[2] = '{"shift_right1", "shift_right2"}; localparam int tests_per_sa = 100; localparam int num_tests = width * tests_per_sa; initial begin // Count of errors for each module. // automatic int err_count[2] = '{0,0}; // // Note: The automatic qualifier is needed so that the initialization // could appear on the same line as the declaration. // Number of test inputs (stimuli). // automatic int test_count = 0; // Provide one test pattern per shift amount. // for ( int i=0; i<num_tests; i++ ) begin int shadow_sout; test_count++; sin = $random; amt = i / tests_per_sa; shadow_sout = sin >> amt; #1; // Check the output of each Module Under Test. // foreach ( name[ mut ] ) begin automatic logic [15:0] sout = mut == 0 ? sout1 : sout2; if ( shadow_sout !== sout ) begin err_count[mut]++; if ( err_count[mut] < 5 ) $display ("MUT %s wrong result for 0x%h >> %d: 0x%h != 0x%h (correct)\n", name[mut], sin, amt, sout, shadow_sout); end end end $display("Ran %d tests, %d, %d errors found.\n", test_count, err_count[0], err_count[1]); end endmodule // cadence translate_on