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Problem 1: [22 pts] The illustration below shows some of the inferred hardware for the behav_merge

module from the solution to Homework 6. The hardware that’s shown is for typical iterations i and i+1.
Show the hardware for iterations i=0 and i=1 with optimizations applied.
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Maximum ib
value is 1,
assume n > 2.

SOLUTION ABOVE

� Show hardware for iterations i=0 and i=1.

� Also show hardware for code before for loop.

� Optimize hardware. Take into account possible values
of ia and ib.

See the next page for a discussion of the solution.

module behav_merge

#( int n = 4, int w = 8 )

( output logic [w-1:0] x[2*n],

input uwire [w-1:0] a[n], b[n] );

logic [$clog2(n+1)-1:0] ia, ib;

always_comb begin

ia = 0; ib = 0;

for ( int i = 0; i < 2*n; i++ )

if ( ib==n || ia!=n && a[ia]<=b[ib] )

x[i] = a[ia++]; else x[i] = b[ib++];

end

endmodule
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SOLUTION ABOVE

Solution appears above.

Explanation: To the left hardware that’s no longer
needed appears in gray. On the right the diagram
is redrawn with the unneeded hardware removed.
The initial zero values for ia and ib make the
a[ia] and b[ib] muxen unnecessary. For i=1
those muxen each have two inputs since the possi-
ble values for ia and ib are either 0 or 1.

A value for n was not given, but it is reasonable to
assume that it is greater than 1. In that case the
output of all of the =n logic blocks will be false.
This makes the AND and OR gates unnecessary,

and so the output of the ≤ block can connect
directly to the x mux and to the logic generating
the new ia and ib signals. For i=0 the ia signal

is equal to the output fo the ≤ block (that is, a
0 or 1), for ib (or to be exact, the least significant
bit of ib) the output is inverted.
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Problem 2: [20 pts] Appearing once again is part of the Homework 6 solution, this time with items labeled
in blue. Show the cost and delay of these, as requested below. See the previous problem for the Verilog
description. The phrase most expensive means for the value of i for which the device needs all inputs, even
after optimization. For the mux, show the cost and delay for the tree implementation.
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� Cost of most expensive a-mux in terms of
n and w.

The mux has n inputs (the size of the a array) of

w bits each. The cost is 3w(n− 1) uc .

� Delay of most expensive a-mux in terms
of n and w.

The delay is 2⌈lg n⌉ ut .

� Cost of most expensive i-mux in terms of
n and w.

The i-mux has just two inputs of lg n bits each
according to the diagram. According to the Verilog
the number of bits is ⌈lg(n + 1)⌉. The cost is

3⌈lg(n+ 1)⌉ uc . Note: 3 lg n would get full
credit.

� Delay of most expensive i-mux in terms
of n and w.

Since there are only two inputs the delay is 2 ut .

� Cost of most expensive a-lim in terms of n and w � after optimizing for constant inputs.

Input n to the equality unit is a constant, so the first column of XOR gates is replaced by NOT gates (in positions where the n bit

is 0). So the equality module is just the NOT gates plus n-input AND gate, the cost of which is (⌈lg(n+ 1)⌉ − 1) uc .

� Delay of most expensive a-lim in terms of n and w � after optimizing for constant inputs.

The delay is ⌈lg⌈lg(n+ 1)⌉⌉ ut .

4



Problem 3: [23 pts] Output lt of module comp, below, should be 1 iff a is strictly less than b, and eq

should be 1 iff a==b. Both a and b are unsigned integers. The module recursively instantiates two instances
of itself, one is supposed to compare the low bits of the inputs, the other compares the high bits. Complete
the module so that it works for any positive w.

� Complete the module, don’t miss the � FILL IN items.

� Make sure that it works for odd and even values of w.

module comp

#( int w = 8 )

( output uwire lt, eq, input uwire [w-1:0] a, b );

if ( w == 1 ) begin // Terminating Case Condition <---- � FILL IN

assign lt = !a && b;

assign eq = a == b;

end else begin

uwire llo, lhi, elo, ehi;

localparam int wlo = w / 2;
localparam int whi = w - wlo;

// Instantiate two comp modules, connect each to about half the inputs.

//

// ---- -------------- -------------- <-- � FILL IN

comp #( wlo ) 
lo( llo, elo, a[ wlo - 1 : 0 ], b[ wlo - 1 : 0 ] );

comp #( whi ) 
hi( lhi, ehi, a[ w - 1 : wlo ], b[ w - 1 : wlo ] );

assign lt = lhi || ehi && llo ; <---- � FILL IN

assign eq = elo && ehi ; <---- � FILL IN

end

endmodule

Solution appears above, in blue, of course.

Explanation: The termination condition must be set to w==1 because the expression !a && b would not set lt to the correct
value if a and b were more than one-bit quantities. Setting w==0 would make no sense from a functionality viewpoint.

The non-terminating case splits the bits making up the two inputs, a and b, between the two recursive instantiations, clo and chi,
in a straightforward manner. Notice that wlo and whi are computed separately (rather than using w/2 for both) to handle odd
values of w.

Finally, outputs lt and eq must be computed from the outputs of clo and chi. Equal is the easier one. Input a equals b if their
low bits and high bits are both equal. That is, eq = elo && ehi. For lt to be true either lhi is true (meaning that a<b
looking only at the most-significant bits) or if the high bits are equal, ehi, and llo is true.
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Problem 4: [10 pts] The output of plus_amt, x, is to be set to b + amt. Input b and output x are expected
to be in IEEE 754 double FP format (the same format as type real). (Note: the port declarations are not
to be modified in the problems below.) Several variations on the module appear below. Hint: Solution to
this problem require the correct use of realtobits and/or bitstoreal. Grading Note: The bonus problem
was not on the original exam.

(a) The module below does not compute the correct result. Fix the module by modifying the always_comb

block. The module does not need to be synthesizable.

� Fix so that x is assigned the correct result, amt plus value of b.

Two solutions appears below. In the original code one operand was an integer type, b, the other was a real type, amt. In such cases
the simulator would add code to convert b from an integer to a real. The simulator has no way of knowing that b already holds a
value in the real format. Once b is converted the value is ruined. Two solutions are shown below. In the first solution two new real
variables are declared, one for b and one for x. The re-interpretation system task $bitstoreal is used to move the value in b to
b real without changing the bits. In the statement x real = b real + amt; all three variables are real, so the simulator
does not do any type conversion. Finally, x is assigned from x real using the re-interpretation system task $realtobits. The
second solution uses these system tasks the same way but without the intermediate variables.

module plus_amt

#( real amt = 1.5 )

( output logic [63:0] x, input uwire [63:0] b );

// Both x and b are IEEE 754 doubles (reals).

real b_real, x_real; // Declare vars to hold real values.

always_comb begin

b_real = $bitstoreal(b); // Re-interpret b as a real.

x_real = b_real + amt; // Note: Both operands are FP, so do FP add.

x = $realtobits(x_real); // Re-interpret x_real as logic vector (int).

end

endmodule

module plus_amt // Compact solution, avoids need for new variables.

#( real amt = 1.5 ) ( output logic [63:0] x, input uwire [63:0] b );

always_comb x = $realtobits( $bitstoreal(b) + amt );

endmodule
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(b) [0 pts] Bonus Problem Complete the module below so that it uses the CW_fp_add module to do the
addition. The parameters to CW_fp_add are already correct, just connect the inputs and outputs.

Complete so that it computes the correct result.
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Problem 5: [25 pts] Show the hardware that will be inferred for the Verilog code below.

� Clearly show module ports.

� Show inferred hardware. Don’t optimize.

� Pay close attention to what is and is not inferred as a register.

module regs #( int w = 10, int k1 = 20, int k2 = 30 )

( output logic [w-1:0] y,

input logic [w-1:0] b, c,

input uwire clk );

logic [w-1:0] a, x, z;

always_ff @( posedge clk ) begin

a = b + c;

if ( a > k1 ) x = b + 10;

if ( a > k2 ) z = b + x; else z = c - x;

y = x + z;

end

endmodule

Solution appears below.

Explanation: The area corresponding to the always ff block is outlined in a green dashed line. Registers are shown on the right-
hand boundary because the value that gets clocked into a register is the value present when control reaches the end of the block (the
end statement above). Four values are assigned within the block, a, x, z, and y. Registers are inferred only for those variables that
are a live out object of the block. That is true for y since it’s also a module output and so its value is needed outside the block. In
contrast, the value of a that is computed in the block is not used again after the end is reached. (When the block is re-entered a
new value of a will be computed.) The same is true for z. But the value of x may be used after end is reached. That happens when
the block is re-entered and a ≤ k1, in which case x is set to the previous value of x (the one in the register) rather than b+10.
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