
Synthesis of Sequential Logic from Behavioral Code

It’s all about the flip-flop.

Storage devices are the distinguishing feature . . .

. . . that differentiate combinational and sequential logic.

Why sequential logic is so much harder than combinational logic.

Inference: There isn’t an operator that synthesizes to a flip-flop . . .

. . . as there is, say, with + for addition.

Logic Design: Designs are trickier . . .

. . . it’s not just what will happen . . .

. . . it’s not even just when it will happen . . .

. . . but whether this happens before that or after that.

Verilog Subtleties: Those ignorant of Verilog timing may be tormented. . .

. . . with seemingly arbitrary errors or behavior.

syncomb1 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb1



Inference of Registers

Encounter’s Generic Flip-Flop: flop.

clk

d

sena

aclr srd

apre srl

q

flop

flop features:

Is positive edge triggered (clk).

Has input d and output q.

Has asynchronous preset (apre) and clear (alcr).

Has a sync. enable (sena) input.

syncomb2 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb2



Encounter’s Generic Flip-Flop: flop.

clk

d

sena

aclr srd

apre srl

q

flop

Inference and Mapping

During elaboration flop used for all inferred
edge-triggered registers.

During technology mapping flop replaced with
registers from technology library.

syncomb3 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb3



Classroom Hardware Diagrams

The term register will be used for one or more flip-flops.

For inferred and optimized hardware. . .

. . . will use streamlined diagrams, omitting unused inputs:

clk

d

sena

aclr srd

apre srl

q

flop

−→
D Q

register_en

data val

clk

enable
en

syncomb4 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb4



Edge-Triggered Flip-Flop Inference

Inference

Selecting a hardware component corresponding to a piece of Verilog behavioral code.

Performed by a synthesis program.

Relationship between behavioral Verilog and inferred hardware . . .

. . . is determined by the synthesis program. . .

. . . not by the Verilog standard or any other standard document.

syncomb5 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb5



Edge-Triggered Flip-Flop Inference Rules

These Inference Rules

Based on Encounter RTL Compiler.

Reference: HDL Modeling in Encounter RTL Compiler 14.2 April 2015.

For inference of edge-triggered register R clocked by clk:

• R must be a variable type.

• R must be assigned in exactly one always block . . .

. . . and must be either consistently blocking (R=x;) . . .

. . . or consistently non-blocking (R<=x;).

• The always block must start with always or always ff.

• The always must be followed by an event control of the form @( posedge clk, ...).

syncomb6 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb6



Simple Register

D Q

register

data val

clk

module register

#( int width = 16 )

( output logic [width-1:0] val,

input uwire [width-1:0] data,

input uwire clk );

always_ff @( posedge clk ) val <= data;

endmodule

clk

data

val

t 0 1 2

7 3 1 24 98

0 7

7

9

syncomb7 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb7



Register with Enable

D Q

register_en

data val

clk

enable
en

module register_en

#( int width = 16 )

( output logic [width-1:0] val,

input uwire enable,

input uwire [width-1:0] data,

input uwire clk );

always_ff @( posedge clk )

if ( enable ) val <= data;

endmodule

clk

data

val

t 0 1 2

7 3 1 24 98

0 7

6

9

enable

syncomb8 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb8



Clock with Reset

D

clk

16'd0

16'd1
+

count_reset

c

reset

c

c

c

Note multiple C values.

module count_reset

#( int bits = 16 )

( output logic [bits-1:0] c,

input uwire reset,

input uwire clk );

always_ff @( posedge clk ) if ( reset ) c <= 0; else c <= c + 1;

endmodule

syncomb9 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb9



Threshold Output

D

clk

16'd1

+
cc

D

o
v
e
r_
th

o
v
e
r_
th

count_thd

th
re
s
h
o
ld

module count_thd

#( int bits = 16 )

( output logic [bits-1:0] c,

output logic over_th,

input uwire [bits-1:0] threshold,

input uwire clk );

always_ff @( posedge clk )

begin

c = c + 1;

over_th = c > threshold;

end

endmodule clk

t 0 1 2

threshold

c

c

over_th

over_th

c

5

syncomb10 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb10



Two Issues:

Critical path through adder/comparison unit.

Do we really want a flip-flop for over th?

D

clk

16'd1

+
cc

D

o
v
e
r_
th

o
v
e
r_
th

count_thd

th
re
s
h
o
ld

clk

t 0 1 2

threshold

c

c

over_th

over_th

c

5

syncomb11 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb11



Fix critical path issue.

D

clk

16'd1

+
cc

D

o
v
e
r_
th

o
v
e
r_
th

count_thd

th
re
s
h
o
ld

module count_thd_alt2

#( int bits = 16 )

( output logic [bits-1:0] c,

output logic over_th,

input uwire [bits-1:0] threshold,

input uwire clk );

always_ff @( posedge clk )

begin

over_th = c > threshold;

c = c + 1;

end

endmodule

syncomb12 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb12



React any time to threshold, not just at positive edge.

D

clk

16'd1

+
cc

o
v
e
r_
th

count_thd

th
re
s
h
o
ld

module count_thd_alt

#( int bits = 16 )

( output logic [bits-1:0] c,

output logic over_th,

input uwire [bits-1:0] threshold,

input uwire clk );

always_ff @( posedge clk ) c <= c + 1;

always_comb over_th = c > threshold;

endmodule

syncomb13 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb13



Example: Sequential Shifter

Remember: We can build an n-bit shifter using ⌈log
2
n⌉ 2i-bit shifters and 2-input muxen.

Why not use one fixed shifter and use it up to n− 1 times?

Why not use < ⌈log
2
n⌉ shifters and muxen but use them multiple times?

We’ll start with one fixed shifter.

syncomb14 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb14



Idea sketch for sequential shifter.

clk

t

unshifted

s
h
if
te
d

shift_ xed

sf

shifted

unshifted

shift_lt_seq

s
h
if
te

d

amt trips

thru shifter

Pass value through shifter amt times.

syncomb15 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb15



Idea sketch for sequential shifter.

clk

t

unshifted

s
h
if
te
d

cnt

shift_ xed

sf

shifted

unshifted

shift_lt_seq

s
h
if
te

d
c
n
tc
n
t

4'd1

Magic

Cloudtm

Use register cnt to count number of times.

syncomb16 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb16



Timing.

amt

cnt

r

0 0

ted

0

ted

1

22

23

24 24

25

clk

t

unshifted

s
h
if
te
d

cnt

shift_ ed

sf

shifted

unshifted

shift_lt_seq

s
h
if
te
d

c
n
tc
n
t

4'd1

Magic

Cloudtm

1: External device provides inputs.

Inputs assumed to be available. . .

. . . early in clock cycle.

syncomb17 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb17



Timing.

amt

cnt

r

0 0

unsh

ifted

0

shifted 384 18

1

22

23

24 24

25

clk

t

unshifted

s
h
if
te
d

cnt

shift_ ed

sf

shifted

unshifted

shift_lt_seq

s
h
if
te
d

c
n
tc
n
t

4'd1

Magic

Cloudtm

2: At positive edge:

cnt initialized to amt.

shifted initialized to unshifted.

syncomb18 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb18



Timing.

amt

cnt

r

0 0

unsh

ifted

0

shifted 384 18

1

22

23

24 24

25

clk

t

unshifted

s
h
if
te
d

cnt

shift_ ed

sf

shifted

unshifted

shift_lt_seq

s
h
if
te
d

c
n
tc
n
t

4'd1

Magic

Cloudtm

3: Early in Cycle 1:

ready goes to zero.

syncomb19 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb19



Timing.

amt

cnt

r

0 0

unsh

ifted

0

shifted 384 18

1

22

23

24 24

25

clk

t

unshifted

s
h
if
te
d

cnt

shift_ ed

sf

shifted

unshifted

shift_lt_seq

s
h
if
te
d

c
n
tc
n
t

4'd1

Magic

Cloudtm

4: During cycles 1 and 2:

New value of count is computed, “shift” per-
formed.

syncomb20 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb20



Timing.

amt

cnt

r

0 0

unsh

ifted

0

shifted 384 18

1

22

23

24 24

25

clk

t

unshifted

s
h
if
te
d

cnt

shift_ ed

sf

shifted

unshifted

shift_lt_seq

s
h
if
te
d

c
n
tc
n
t

4'd1

Magic

Cloudtm

5: Beginning of cycle 3:

Ready signal set to 1.

syncomb21 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb21



Notes about behavior.

Start signal must be stable at positive edge.

Inputs required to be available early in clock cycle.

Result available at beginning of clock cycle.

Ready signal available early in clock cycle.

syncomb22 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb22



Sequential Shifter Verilog

module shift_lt_seq #( int wid_lg = 4, int wid = 1 << wid_lg )

( output logic [wid-1:0] shifted, output uwire ready,

input [wid-1:0] unshifted, input [wid_lg-1:0] amt,

input start, input clk );

uwire [wid-1:0] sf_out;

shift_fixed #(wid_lg,1) sf( sf_out, shifted, 1’b1 ); // Fixed Shifter

logic [wid_lg-1:0] cnt;

always_ff @( posedge clk )

if ( start == 1 ) begin

shifted = unshifted; // Load a new item to shift ...

cnt = amt; // .. and initialize amount.

end else if ( cnt > 0 ) begin

shifted = sf_out; // Shift by one more bit ..

cnt--; // .. and update count.

end

assign ready = cnt == 0; // Set ready to 1 when count is zero.

endmodule

syncomb23 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb23



Inferred Hardware, No Optimization

clk

4'd1

t

unshifted

s
h
if
te
d

cnt

shift_ ed

sf

sf_out

wid_lg=4

amt=1

shifted

unshifted

shift1'd1

shift_lt_seq

shifted

s
h
if
te
d

cnt

cnt c
n
tc
n
t

s
h
if
te
d

cnt > 0

4'd0

4'd0

module shift_lt_seq

#( int wid_lg = 4, int wid = 1 << wid_lg )

( output logic [wid-1:0] shifted,

output uwire ready,

input [wid-1:0] unshifted,

input [wid_lg-1:0] amt,

input start, input clk );

uwire [wid-1:0] sf_out;

shift_fixed #(wid_lg,1) sf(sf_out,shifted,1’b1);

logic [wid_lg-1:0] cnt;

always_ff @( posedge clk )

if ( start == 1 ) begin

shifted = unshifted;

cnt = amt;

end else if ( cnt > 0 ) begin

shifted = sf_out;

cnt--;

end else begin shifted = shifted; cnt = cnt; end

assign ready = cnt == 0;

endmodulesyncomb24 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb24



Inferred Hardware, No Optimization

amt

cnt

r

0 0

unsh

ifted

0

shifted 384 18

1

22

23

24 24

25

clk

4'd1

t

unshifted

s
h
if
te
d

cnt

shift_ ed

sf

sf_out

wid_lg=4

amt=1

shifted

unshifted

shift1'd1

shift_lt_seq

shifted
s
h
if
te
d

cnt

cnt c
n
tc
n
t

s
h
if
te
d

cnt > 0

4'd0

4'd0

syncomb25 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb25



amt

cnt

r

0 0

unsh

ifted

0

shifted 384 18

1

22

23

24 24

25clk

4'd1

t

unshifted

s
h
if
te
d

cnt

shift_ ed

sf

sf_out

wid_lg=4

amt=1

shifted

unshifted

shift1'd1

shift_lt_seq

shifted

s
h
if
te
d

cnt

cnt c
n
tc
n
t

s
h
if
te
d

cnt > 0

4'd0

4'd0

Pay Attention To

Setup delay: inputs to registers.

Operation delay: register to register.

Output delay: generation of the ready signal.

syncomb26 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb26



Streamlining and Optimization

Streamline hardware illustration to make it readable.

Include optimizations we hope synthesis program will make.

Optimization Opportunities

Use an enable for registers.

Shifter is just a bit renaming plus one zero.

The three operations on cnt, c > 0, c− 1, and c == 0 . . .

. . . can all be done by the same logic.

syncomb27 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb27



clk

4'd1

t

unshifted

s
h
if
te
d

cnt

shift_ ed

sf

sf_out

wid_lg=4

amt=1

shifted

unshifted

shift1'd1

shift_lt_seq

shifted

s
h
if
te
d

cnt

cnt c
n
tc
n
t

s
h
if
te
d

cnt > 0

4'd0

4'd0

clk

t

unshifted

s
h
if
te
d

cnt

shift_lt_seq wid_lg=4

c
n
tc
n
t

1'd0

v
v-1

v=0

lsb

msb14:0 en

en

sf_out

syncomb28 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb28



Sequential Shifter with Multiple Shifters

For example: Shift x by 9 bits.

clk

t

unshifted

s
h
if
te
d

cnt

shift_ ed

shifted

u
n
s
h
ifte

d

shif num_shifters=2

s
h
if

c
n
tc
n
t

4'd1
-

wid_lg=4,

amt=1

shift

shift_

sf4

shif

u
n
s
h
if

wid_lg=4,

amt=4

shift

cnt

4'd1
-

Magic

Cloudtm

Use a sequential shifter with 4-bit and 1-bit
shifters.

Shift by 4-bits twice and by 1-bit once.

Features

The cnt register divided into multiple seg-
ments.

Fixed shifter may or may not shift.

syncomb29 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb29



Performance Analysis and Design Optimization

Goal: Choose the best shifter for some larger design.

syncomb30 LSU EE 4755 Lecture Transparency. Formatted 13:23, 11 December 2018 from lsli-syn-seq-TeXize. syncomb30


