Simple Cost and Performance Model

Simple Models Goals

Choose between design alternatives.

Characterize a particular design approach.

The models will be used throughout the semester.

Simple Model Non-Goals

Approximate the post synthesis cost and performance.

Practice Problems

Problems based on the material in these slides.

2016 Final Exam Problem 2b and Problem 4 (greedy and fcfs fit).

The Simple Cost Model

Simple Model Base Costs

2-input AND gate: 1 u_c. (One unit of cost.)

2-input OR gate: 1 u_c.

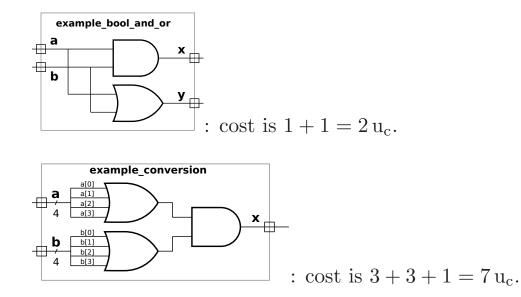
NOT gate: $0 u_c$. (Zero cost.)

Simple Model Derived Costs

Based on equivalent circuit using gates above.

E.g., cost of *n*-input OR gate: (n-1) u_c.

E.g., cost of *n*-input AND gate: (n-1) u_c.


E.g., cost of a 2-input XOR gate is $3 u_c$.

E.g., cost of an edge-triggered flip-flop is $7 u_c$.

E.g., cost of a *w*-bit edge-triggered register is $7w u_c$.

Simple Examples:

- A 2-input AND gate: cost is $1 u_c$.
- A 10-input OR gate: cost is $9 u_c$.
- A 1-input OR gate: free.

The Simple Performance Model

The Simple Performance Model Base Delays

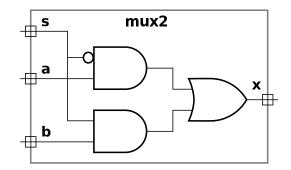
2-input AND gate: $1 u_t$ (One time unit.)

2-input OR gate: 1 ut.

NOT gate: $0 u_t$.

The Simple Performance Model Derived Delays

Based on equivalent circuit using gates above.


E.g., delay of a 2-input XOR gate: $2 u_t$.

E.g., delay of *n*-input OR gate: $\lceil \lg n \rceil u_t$.

E.g., delay of *n*-input AND gate: $\lceil \lg n \rceil u_t$.

E.g., delay of an edge-triggered flip-flop is $6 u_t$.

Multiplexors

A 2-input, 1-bit mux:

Cost, 3 units; delay, 2 units.

A 2-input, w-bit mux:

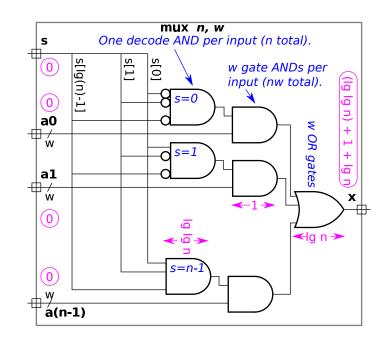
This is equivalent to w copies of the mux above.

Cost, 3w units; delay, 2 units.

Multiplexors

An *n*-input, *w*-bit mux, unoptimized decoder implementation:

Note: The number of select bits is $\lceil \lg n \rceil$.


Cost Computation:

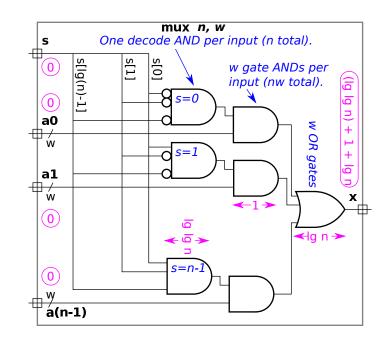
Decoder AND gates (first column): $n(\lceil \lg n \rceil - 1)$.

Selection AND gates (second column): wn.

```
OR gate: w(n-1).
```

Total cost: $n(\lceil \lg n \rceil - 1) + 2wn - w$.

Delay Computation


Decoder AND gate (first column): $\lceil \lg(\lceil \lg n \rceil - 1) \rceil$.

Selection AND gates (second column): 1.

OR gate: $\lceil \lg n \rceil$.

Total delay: $\lceil \lg(\lceil \lg n \rceil - 1) \rceil + 1 + \lceil \lg n \rceil$.

Approximate delay: $1 + \lceil \lg n \rceil$.

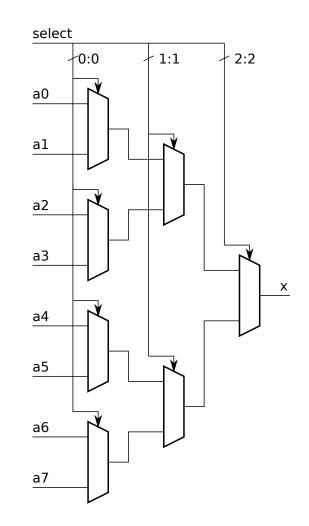
An *n*-input, *w*-bit mux, tree implementation:

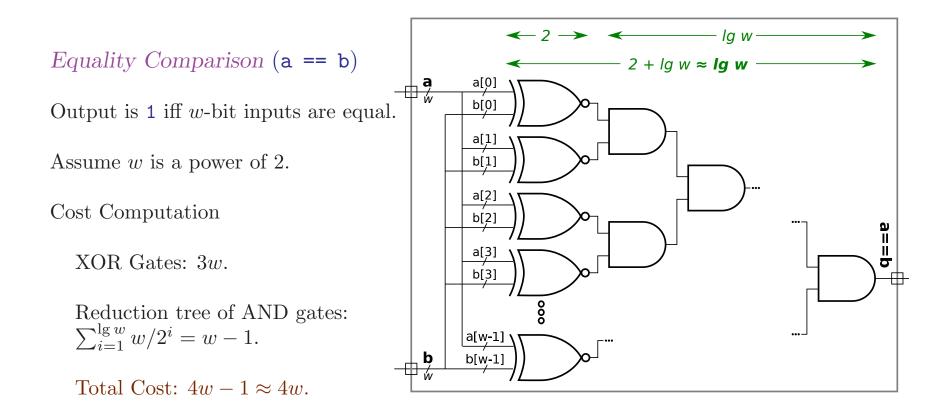
Constructed from 2-input multiplexors.

Illustration is for n = 8.

The path from the selected input is through $\lceil \lg n \rceil$ 2-input muxen through 3 for illustrated size, n = 8.

The number of muxen connected to select bit i...... is $n/2^{i+1}$ for $0 \ge i < \lceil \lg n \rceil ...$... for illustrated size 2 muxen connect to bit 1.


Cost Computation


Total number of 2-input muxen ...

 $\dots \sum_{i=0}^{\lg n-1} n/2^{i+1} = n-1 \dots$... for illustrated mux, 7 2-input muxen.

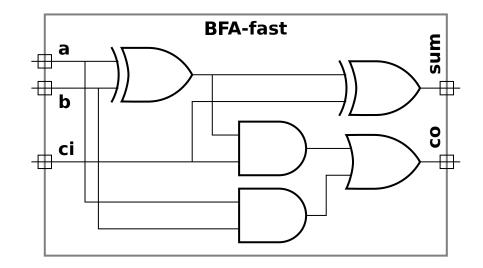
Total cost: 3w(n-1).

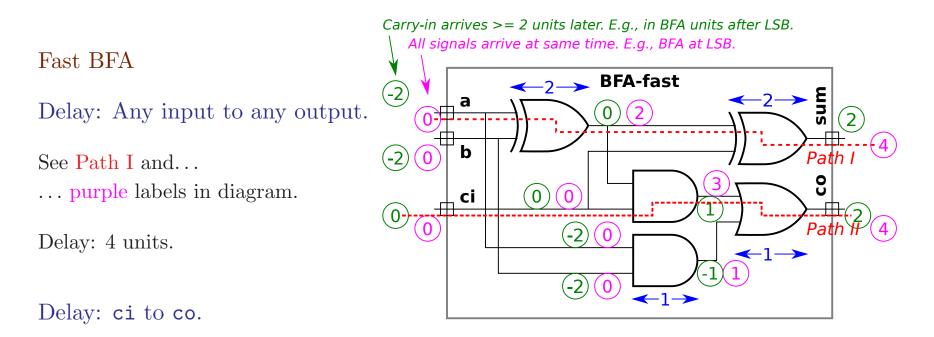
Total Delay: $2\lceil \lg n \rceil$.

Delay Computation

XOR Gates: 2.

Reduction Tree: $\lg w$.

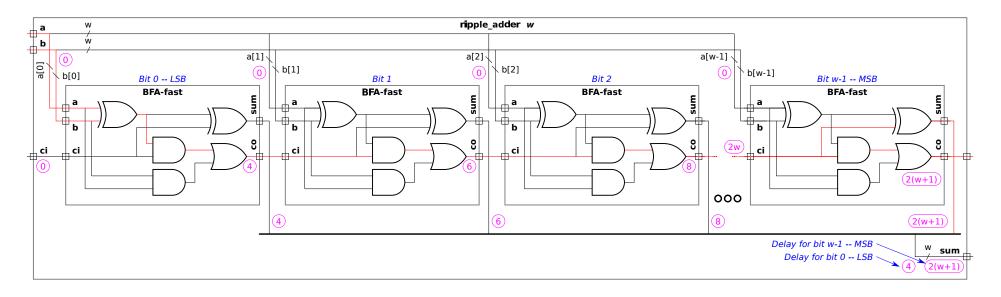

Total Delay: $2 + \lg w \approx \lg w$.


Binary Full Adder Implementations

Fast BFA

Cost Computation

Two XOR, 3 AND: $2 \times 3 + 3 = 9$ units.


This delay is useful when **a** and **b** arrive earlier than **ci**.

See Path II and green labels in diagram.

Delay: 2 units.

w-Bit Ripple Adder

Implementation using Fast BFA

Cost Computation: Cost of w BFAs: 9w units.

Delay Computation

See critical path (in red) in diagram.

Delay: $2(w+1) \approx 2w$.

Integer Magnitude Comparison

For comparisons like a < b.

Implementation:

Compute a - b and check whether result negative.

If carry out of MSB is 0 then a - b < 0 and so a < b is true.

Omit sum hardware in BFA, and replace remaining XOR with an OR.

Cost Computation

Each modified BFA now costs 4 units.

Total cost: 4w units.

Delay Computation

Delay is 3 for first bit, 2 for remaining bits.

Total delay: $2w + 1 \approx 2w$.

smod-14

Cascaded Ripple Units

For computations using ripple units... ... such as a + b + e, and (a + b) < e, etc.

Cost Computation

Cost is sum of costs of each ripple unit.

For example, a + b + c is two ripple adders, cost is $18w u_c \dots$

 $\dots (a+b) < e$ is a ripple adder plus a magnitude comparison: $9w + 4w = 13w u_c$.

Cascaded Ripple Units

Delay Computation:

Consider (a+b) + e.

Naïve analysis: wait for a + b to finish, then start +e.

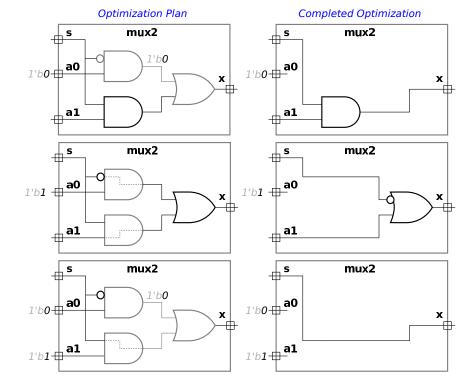
But, LSB of a + b available after only $4 u_t \dots$... bit *i* is available after $(4 + 2i) u_t \dots$... so the +e computation can start after $4 u_t$.

Delay for two ripple units is $4 + 2(w + 1) u_t$.

Delay for bit i at output of n ripple units is $4(n-1) + 2(i+2)u_t$.

Delay for n ripple units is $4(n-1) + 2(w+1)u_t$.

Cost and Performance with Constant Inputs


Constant Inputs

Signal values which never change.

Cost and delay are radically different when an input never changes.

In Verilog, this might be an elaboration-time constant or other expressions that never change.

Multiplexor Constant-Input Optimizations

Sample mux optimizations:

Costs: From top to bottom costs are: 1 unit, 1 unit, zero units.

Delays: From top to bottom delays are: 1 unit, 1 unit, zero units.