
LSU EE 4755 Homework 8 Solution Due: 27 November 2018

Problem 1: Appearing below is the output of the simulator and synthesis script, showing data
for the Homework 7 solution modules. Modules are simulated and synthesized for w = 32.

Module Name Area Period Period

Target Actual

mult_seq_ds_prob_1_w32_m1 157813 1000 14926

mult_seq_ds_prob_1_w32_m2 185493 1000 15431

mult_seq_ds_prob_1_w32_m4 242568 1000 16296

mult_seq_d_prob_2_w32_m1 288580 1000 31944

mult_seq_d_prob_2_w32_m2 301203 1000 32204

mult_seq_d_prob_2_w32_m4 329226 1000 32192

For Prob 1 Deg 1 ran 400 tests, 0/ 0/ 0 errors found. Avg cyc 33.0

For Prob 1 Deg 2 ran 400 tests, 0/ 0/ 0 errors found. Avg cyc 17.0

For Prob 1 Deg 4 ran 400 tests, 0/ 0/ 0 errors found. Avg cyc 9.0

For Prob 2 Deg 1 ran 400 tests, 0/ 0/ 0 errors found. Avg cyc 9.5

For Prob 2 Deg 2 ran 400 tests, 0/ 0/ 0 errors found. Avg cyc 7.3

For Prob 2 Deg 4 ran 400 tests, 0/ 0/ 0 errors found. Avg cyc 5.0

Modules instantiated with w = 32.

The Problem 1 modules are based on the streamlined multiplier and so are faster. But the
Problem 2 modules skip zeros. Based on the data above, indicate the ways, if any, that the Problem
2 modules are better than the Problem 1 modules. Explain using the numbers above.

By skipping zeros the Problem 2 modules should compute a result with lower latency (in less time) than the Problem
1 modules, which require ⌈w/m⌉+1 cycles regardless of the numbers being multiplied. The latency for a multiplication
is the product of the clock period and the average number of cycles required. For the Problem 1 modules that works out
to

33× 14.926 ns = 492.6 ns, 17× 15.431 ns = 262.3 ns, and 9× 16.296 ns = 146.7 ns

for the degree (m) 1, 2, and 4 modules respectively. Though the clock periods for the Problem 2 modules are larger,
fewer cycles are needed to produce an answer according to the data collected by the testbench. (See the number to the
right of Avg cyc.) The Problem 2 module latencies are

9.5× 31.944 ns = 303.5 ns, 7.3× 32.204 ns = 235.1 ns, and 5.0× 32.192 ns = 161.0 ns.

In all but the m = 4 case the Problem 2 module has a lower latency than the respective Problem 1 module.

There are more problems on the next pages.

1

https://www.ece.lsu.edu/koppel/v/

Problem 2: Appearing below is a solution to Homework 7, Problem 1, the streamlined degree-m
multiplier with handshaking. The complete solution is at
https://www.ece.lsu.edu/koppel/v/2018/hw07-sol.v.html. For this problem assume that w
and m are both powers of 2.

module mult_seq_ds_prob_1 #(int w = 16, int m = 2)

(output logic [2*w-1:0] prod, output logic out_avail,

input uwire clk, in_valid, input uwire [w-1:0] plier, cand);

localparam int iterations = (w + m - 1) / m;

localparam int iter_lg = $clog2(iterations);

uwire [iterations-1:0][m-1:0] cand_2d = cand;

bit [iter_lg:0] iter;

logic [2*w-1:0] accum;

always_ff @(posedge clk) begin

if (in_valid) begin

accum = cand;

iter = 0;

out_avail = 0;

end else if (!out_avail && iter == iterations) begin

out_avail = 1;

prod = accum;

end

accum = { 0 + plier * accum[m-1:0] + accum[2*w-1:w], accum[w-1:m] };

iter++;

end

endmodule

2

https://www.ece.lsu.edu/koppel/v/2018/hw07-sol.v.html

(a) Show the hardware that will be inferred for this module. The Inkscape SVG format diagram
of the hardware for the streamlined sequential module from the class demo notes can be used as a
starting point. It is at https://www.ece.lsu.edu/koppel/v/2018/ill-mul-seq-str.svg.

clk

mult_seq_ds_prob_1 (w,m)
p
ro
d

accum

iter

cand

plier

m
0

w-1:m

2w-1:w

accum

lsb

msb

2w

2w

lg w/m

w

w

+
m-1:0

w
0

1
0 +

w/m

in_valid

=

0
1

o
u
t_
a
v
a
il

lsb

w+m

Unoptimized

2w+3m-5+4

Combined delay of

multiplier and adder.

Solution appears above with the critical path shown in red. The hardware is un-optimized. Optimization opportu-
nities include the logic for computing out avail.

(b) Compute the cost and delays for this module using the simple model. Show these in terms of
w and m. Clearly show the critical path on your diagram.

See the solution to Problem 3 for a complete delay and timing analysis. In this (Problem 2) module the cost of the
adder is less because it is w +m bits, rather than 2w bits for the Problem 3 adder. Also, this module does not use a
shifter or a mux to extract the multiplicand bits.

There is a problem on the next page.

3

https://www.ece.lsu.edu/koppel/v/2018/ill-mul-seq-str.svg

Problem 3: Appearing below is a solution to Homework 7, Problem 2, the streamlined degree-m
multiplier with handshaking. The complete solution is at
https://www.ece.lsu.edu/koppel/v/2018/hw07-sol.v.html. For this problem assume that w
and m are both powers of 2.

module mult_seq_d_prob_2 #(int w = 16, int m = 2)

(output logic [2*w-1:0] prod, output logic out_avail,

input uwire clk, in_valid, input uwire [w-1:0] plier, cand);

localparam int iterations = (w + m - 1) / m;

localparam int iter_lg = $clog2(iterations);

uwire [iterations-1:0][m-1:0] cand_2d = cand;

bit [iter_lg-1:0] iter;

logic [2*w-1:0] accum;

always_ff @(posedge clk) begin

logic [iter_lg-1:0] next_iter;

if (in_valid) begin

iter = 0;

accum = 0;

out_avail = 0;

end else if (!out_avail && iter == 0) begin

prod = accum;

out_avail = 1;

end

accum += plier * cand_2d[iter] << (iter * m);

next_iter = 0;

for (int i=iterations-1; i>0; i--)

if (i>iter && cand_2d[i]) next_iter = i;

iter = next_iter;

end

endmodule

4

https://www.ece.lsu.edu/koppel/v/2018/hw07-sol.v.html

(a) Show the hardware that will be inferred for this module.

clk

mult_seq_d_prob_2 (w,m)

p
ro
d

a
c
c
u

m

iter

cand

plier

2w

2w

lg w/m

w

w

0

0

in
_
v
a
lid

0
1

o
u
t_
a
v
a
il

w+m

Unoptimized

2w

<<m-1:0

2m-1:m

3m-1:2m

w-1:w-m

m

lg m
0

amt

0

n = w/m, same as iterations in code.

w
-1

:w
-m

0

n-1

>n-1

0

w
-1

-m
:w

-2
m

n-2

>n-2

0

1

>1

2
m

-1
:m

0

+

iter

iter

cand

iter

i=n-1 i=n-2 i=1

=

1

Hardware shown above with the critical path shown in red.

5

(b) Compute the cost and delays for this module using the simple model. Show these in terms of
w and m. Clearly show the critical path on your diagram.

clk

mult_seq_d_prob_2 (w,m)
p
ro
d

a
c
c
u

m
ite

r

cand

plier

2w

2w

lg w/m

w

w

0

0

in
_
v
a
lid

0
1

o
u
t_
a
v
a
il

w+m

Unoptimized

2w

<<m-1:0

2m-1:m

3m-1:2m

w-1:w-m

m lg m
0

amt

0

n = w/m

w
-1

:w
-m ≠

0

n-1

>n-1

0

w
-1

-m
:w

-2
m

≠

n-2

>n-2

0 ≠

1

>1

2
m

-1
:m

0

+

iter

iter

cand

iter

i=n-1 i=n-2 i=1

=

1

9(m+w-1)m

9(m+w)

Cost in turquoise.

3(m+w)lg n

2w

3
m

(n
-1

)

6w

1
4

w
1

4
w

7n = 7w/m

1 1

2 7

n
lg n

m-1
1

n

lg n-1

lg m

lg n

2

lg lg n

4(m-2)+4 : 2w+6m-6

4w+4

all bits

0

1

1
+

2
lg

 n

1+2lg n +

 4(m-2)+4first bit

2lg n + 4m

- 3 + 2lg n

first bit

4lg n + 4m

- 3 + 4w+4

all bits

1
+

lg
 n

Component
delay in purple.

Path delay
in orange.

1
+

lg
 n

2+lg n

3
+

lg
 n

1+n

+lg n

0

0

0

0

0

0 2lg n

1

2lg n

1

1

1

11

2

The costs and delay of each component are shown in the diagram above. The path delay for selected paths is shown

in the circled orange numbers . Note that one input to all of the comparison units (for example, the zero in 6= 0), is a
constant, reducing their costs and delays. Many of the multiplexors also have one constant data input.

The interesting thing to compare is the time needed to compute the updated accum value versus the time needed
to find the next non-zero digit. The i > iter comparison, because i is a constant, takes time lgw/mut = lgn ut and

6

the 6= 0 takes less, especially if w/m > m. The mux delay is 1 ut because one data input is a constant. The time to
generate the new iter signal is (1 + n+ lgn) ut.

The updated accum value consumes most of the time. Inputs arrive at the multiplier at time 1 + 2 lg n. For
an unoptimized m-bit by w +m-bit multiplier, the least significant bit takes (4(m − 2) + 4) ut to compute. Since
the shifter can shift by n possible amounts its delay is 2 lg n. The least significant bit arrives at the adder at time
1 + 2 lg n+ 4(m− 2) + 4 + 2 lg n = (4 lg n+ 4m− 3) ut (see the diagram). The adder requires (4w + 4) ut
to finish and so the adder output is ready at time (4 lg n+ 4m− 3 + 4w + 4) ut.

The clock period would include six more cycles for the latch setup time.

7

