
LSU EE 4755 Homework 5 Due: 12 October 2018

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete

Verilog for this assignment without visiting the lab follow

https://www.ece.lsu.edu/koppel/v/2018/hw05.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw05.v.

Homework Overview
The sorting networks used in past assignments were not very efficient, they were the rough hardware
equivalent of bubble sorts. In this assignment much better sorters will be implemented, sorting
networks based on Batcher’s odd/even merge design.

Testbench Code
The testbench for this assignment, which can be run when visiting the file in Emacs in a properly
set-up account by pressing F9 , tests module batcher_sort and batcher_merge at several different
sizes.

Here is a transcript showing the output of the testbench (after the compiler’s own messages):

ncsim> run

Starting testbench.

Mod batcher_merge, n=2, sort 1 idx 0, wrong elt 18 != 7 (correct)

Mod batcher_merge, n=2, sort 1 idx 1, wrong elt 7 != 18 (correct)

Mod batcher_merge, n=2, sort 4 idx 0, wrong elt 216 != 120 (correct)

Mod batcher_merge, n=2, sort 4 idx 1, wrong elt 120 != 216 (correct)

Mod batcher_merge, n=2, sort 7 idx 0, wrong elt 150 != 12 (correct)

Tests for batcher_merge (idx 1) n=2 done, errors in 3 of 10 sorts.

Tests for batcher_merge (idx 2) n=4 done, errors in 6 of 10 sorts.

Tests for batcher_merge (idx 3) n=8 done, errors in 10 of 10 sorts.

Tests for batcher_merge (idx 4) n=16 done, errors in 10 of 10 sorts.

Tests for batcher_merge (idx 5) n=32 done, errors in 10 of 10 sorts.

Tests for batcher_sort (idx 7) n=2 done, errors in 2 of 10 sorts.

Tests for batcher_sort (idx 8) n=4 done, errors in 10 of 10 sorts.

Tests for batcher_sort (idx 9) n=8 done, errors in 9 of 10 sorts.

Tests for batcher_sort (idx 10) n=16 done, errors in 10 of 10 sorts.

Tests for batcher_sort (idx 11) n=32 done, errors in 10 of 10 sorts.

Done with all tests, errors on 10 sorters.

The transcript shows the first five errors in detail, this is on lines starting with Mod. A tally of
the total number of errors for a particular module is shown on a line starting Tests for.

Here is the output when the assignment is correctly solved:

ncsim> run

Starting testbench.

Tests for Batcher Merge (idx 1) n=2 done, errors in 0 of 10 sorts.

Tests for Batcher Merge (idx 2) n=4 done, errors in 0 of 10 sorts.

Tests for Batcher Merge (idx 3) n=8 done, errors in 0 of 10 sorts.

Tests for Batcher Merge (idx 4) n=16 done, errors in 0 of 10 sorts.

Tests for Batcher Merge (idx 5) n=32 done, errors in 0 of 10 sorts.

Tests for Batcher Sort (idx 7) n=2 done, errors in 0 of 10 sorts.

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2018/hw05.v.html
https://www.ece.lsu.edu/koppel/v/proc.html


Tests for Batcher Sort (idx 8) n=4 done, errors in 0 of 10 sorts.

Tests for Batcher Sort (idx 9) n=8 done, errors in 0 of 10 sorts.

Tests for Batcher Sort (idx 10) n=16 done, errors in 0 of 10 sorts.

Tests for Batcher Sort (idx 11) n=32 done, errors in 0 of 10 sorts.

Done with all tests, errors on 0 sorters.

Debugging
To debug your code run SimVision: irun -gui hw05.v. Locate your module and copy symbols to
the waveform viewer. See the SimVision instructions on the
https://www.ece.lsu.edu/koppel/v/proc.html page.

Synthesis
The synthesis script, syn.tcl, will synthesize sort2 with two delay targets, an easy 10 ns and a un-
achievable 0.1 ns. If the module doesn’t synthesize −.001 s is shown for the delay. The script is run
using the shell command genus -files syn.tcl, which invokes Cadence Genus. In past semesters
Cadence RTL Compiler (rc) was used, which would be invoked using rc -files syn.tcl, but
that won’t work on the 2018 homework assignments.

The synthesis script shows area (cost), delay, and the delay target in a neat table. Additional
output of the synthesis program is written to file spew.log.

Problem 1: Complete module batcher_sort so that it implements a sorter as described below.
The module has one input, an n-element array a, and one output, an n-element array x. Above
some minimum value of n it should instantiate two copies of itself, each copy should sort half the
the input array, a. A behav_merge module should be instantiated to merge the output of the two
recursive implementations.

The behav_merge module, which is already written, has two inputs, a and b, each an n-element
array, and one output, x, a 2n-element array, where n is the value of the first parameter. Output
x contains the elements of a and b in sorted order.

Once Problem 2 is solved correctly replace behav_merge with batcher_merge.

The module must use structural code, be synthesizable, be reasonably efficient, clearly written,
and of course pass the testbench. See other conditions on the solution and tips in the Verilog file.

The solution to this problem is straightforward and will be in the form of other tree-structured
designs shown in class.

Warning: Do not search for a solution to this problem. Exam questions will be written under

the assumption that each student has solved all homework problems.

Problem 2: Complete module batcher_merge so that it recursively implements a Batcher odd/
even merge module in which the number of elements of each input list is a power of 2. Use sort2

instantiations to combine the output of the recursively instantiated modules. Use either structural
or behavioral code to separate each input sequence into odd and even parts.

The batcher_merge module should recursively instantiate two copies of itself, call them lo
and hi. Input a of the lo module should connect to the even-numbered a elements of the enclosing
module, input b of lo connects to odd-numbered b elements of the enclosing module. For the hi
module switch odd and even. See the illustration below. The illustration also shows how the
outputs should connect.

2

https://www.ece.lsu.edu/koppel/v/proc.html


b

x

a

a

b

x

lo

batcher_merge

a0, a2, a4, ..

b1, b3, b5, ..

b0, b2, b4, ..

a1, a3, a5, ..

batcher_merge

a
0

, a
1

, a
2

, ..
b
0
, b

1
, b

2
, ..

x0

x1

a0

a1

s
o
r
t
2

x0

x1

a0

a1

s
o
r
t
2

x0

x1

x2

x3

y

a

b

x

hi

batcher_merge
z

Even elements.Even elements.

Even elements.

Odd elements.

Odd elements.

y0

z0

y1

z1

Warning: Do not search for a solution to this problem. Exam questions will be written under

the assumption that each student has solved all homework problems.

The module must be synthesizable, reasonably efficient, clearly written, and of course pass the
testbench.

Do not compare the cost and performance reported by genus for your module, batcher_merge,
to those for behav_merge. That’s because genus does not correctly infer hardware for behav_merge.

3


