Problem 1: The Verilog code below is the `sort3` module from Homework 1. Draw a diagram of the hardware as described by `sort3`, showing the `sort2` modules as boxes. Be sure to label the input and output ports with the same symbols used in the module.

```
module sort3
  # ( int w = 8 )
  ( output uwire [w-1:0] x0, x1, x2,
    input uwire [w-1:0] a0, a1, a2 );

  uwire [w-1:0] i10, i11, i21;

  sort2 #(w) s0_01( i10, i11, a0, a1 );
  sort2 #(w) s1_12( i21, x2, i11, a2 );
  sort2 #(w) s2_01( x0, x1, i10, i21 );
endmodule
```

Solution appears below.

- `a0` - `x0`
- `a1` - `i10`
- `a2` - `i21`
- `i10` - `i11`
- `i11` - `i21`
- `s0_01` - `sort2`
- `s1_12` - `sort2`
- `s2_01` - `sort2`
- `sort3` - 3 `sort2`

Problem 2: It is possible to build an \(n \)-element sorting network using \(\frac{n}{2} \lg^2 n \) two-element sorting networks in such a way that the \(n \)-element sorting network has a critical path of \(\lg^2 n \). (Note: \(\lg n \equiv \log_2 n \).) But this assignment is concerned with \(n \)-element sorting networks using \(n(n-1)/2 \) two-element sorting networks, which we will call \(n \)-element bad sorting networks or bad sorters for short.

An \(n \)-element bad sorter has inputs \(a_0, a_1, \ldots, a_{n-1} \) and outputs \(x_0, x_1, \ldots, x_{n-1} \). The largest value is routed to \(x_{n-1} \).

A 2-element bad sorter is a single `sort2` module. An \(n \)-element bad sorter, \(n > 2 \), can be constructed using an \((n-1) \)-element bad sorter and \(n-1 \) `sort2` modules as follows. The \(n-1 \) `sort2` modules are connected to the \(n \) inputs and to each other in such a way that the largest value is routed to a specific output of one of the `sort2` modules. That specific `sort2` output is connected to output \(x_{n-1} \) of the \(n \)-element sorter. The other values connect to the \((n-1) \)-element bad sorter, and the \((n-1) \)-element bad sorter outputs connect to outputs \(x_0, x_1, \ldots, x_{n-2} \) of the \(n \)-element bad sorter that we are constructing. Note that this generalizes the solution to Homework 1 Problem 2.

The description above is recursive. At level \(i \) (the same as \(n \) above) another \(i-1 \) `sort2` modules are used. For a 4-element sorter we need \((4-1) + (3-1) + 1 = 6 \) `sort2` modules. The
cost of an \(n \)-element bad sorter is found by solving the summation \(\sum_{i=2}^{n} i - 1 \), which is \(n(n - 1)/2 \). That’s \(O(n^2) \), which is how the bad sorter got its name.

It gets worse. The critical path through the bad sorter can range from bad to awful. That depends on two things: How the sort2 modules are used to find the largest value, and how the sort2 modules connect to the \((n - 1)\)-element bad sorter.

(a) Show the worst way that sort2 modules can be connected to find the largest value. \textit{Hint: the critical path should be } \(n - 1 \) sort2 \textit{modules.} Provide a sketch for the general case, and an example for \(n = 4 \).

Call the sort2 modules \(s_0 \) to \(s_{n-2} \). Connecting output \(x_1 \) of \(s_i \) to input \(a_0 \) of \(s_{i+1} \) for \(0 \leq i < n - 1 \) is the worst way to connect \(n - 1 \) modules. See the illustration below. The critical path starts at \(a_0 \) or \(a_1 \) and ends at either output of sorter \(s_{n-2} \).

\[(b) \text{ Show the worst way that the sort2 modules, as connected above, can connect to the } (n - 1)\text{-element sorter. Provide a sketch.} \]

Notice that the critical path through the sort2 modules starts at \(a[0] \) and ends at \(j[n-2] \). So when connecting \(j[n-2] \) to the smaller sort module the worst ports that it can be connected to are \(a[0] \) and \(a[1] \). That’s shown below. Note that \(n \) inside the smaller \textit{sort awful} is equal to \(n-1 \) in the larger one.
(c) Determine the critical path for an \(n \)-element bad sorter constructed in the way described in the last two parts. Hint: The math part should be familiar.

In an \(n \)-input awful bad sorter the path from \(a_0 \) to \(j[n-2] \) is of length \(n - 1 \). Signal \(j[n-2] \) connects to \(a_0 \) of an \(n - 1 \) element bad sorter where it goes through \(n - 2 \) sort2 modules. The total length of the path is \(\sum_{i=n}^{2} i - 1 = n(n - 2)/2 \) sort2 modules.

(d) Show a much better way of connecting the sort2 modules to find the largest value. It should be easy to show that the critical path is the lowest that is possible. Provide a sketch for \(n = 8 \).

Connect the sort2 modules in a tree, the solution appears below for \(n = 8 \), and showing the recursive connection.

The problem with the approach to building the bad sorters described in this assignment is that each level in the recursion reduces the size by 1 (that is, from \(n \) to \(n - 1 \)), and so the critical path must be at least \(O(n) \). As some students may have realized, a better approach would be to use recursion in which the \(n \) inputs were split between two \(\frac{n}{2} \)-element networks and then somehow combined. But how? The key insight, described by K. E. Batcher in a landmark 1968 paper, is not to try to recursively describe a sorting network, but to instead recursively describe a network that merges two already sorted sequences. The input to a 2-element merge network would be two 1-element sorted sequences. (Of course, every 1-element sequence is sorted.) Pairs of 2-element merge networks feed a 4-element merge network, and so on. This will be further described later in the semester.