
LSU EE 4755 Homework 2 Due: 12 September 2018

Problem 1: The Verilog code below is the sort3 module from Homework 1. Draw a diagram of
the hardware as described by sort3, showing the sort2 modules as boxes. Be sure to label the
input and output ports with the same symbols used in the module.

module sort3

#(int w = 8)

(output uwire [w-1:0] x0, x1, x2,

input uwire [w-1:0] a0, a1, a2);

uwire [w-1:0] i10, i11, i21;

sort2 #(w) s0_01(i10, i11, a0, a1);

sort2 #(w) s1_12(i21, x2, i11, a2);

sort2 #(w) s2_01(x0, x1, i10, i21);

endmodule

Problem 2: It is possible to build an n-element sorting network using n

2
lg2 n two-element sorting

networks in such a way that the n-element sorting network has a critical path of lg2 n. (Note:
lg n ≡ log

2
n.) But this assignment is concerned with n-element sorting networks using n(n− 1)/2

two-element sorting networks, which we will call n-element bad sorting networks or bad sorters for
short.

An n-element bad sorter has inputs a0, a1, . . . , an−1 and outputs x0, x1, . . . , xn−1. The largest
value is routed to xn−1.

A 2-element bad sorter is a single sort2 module. An n-element bad sorter, n > 2, can be
constructed using an (n − 1)-element bad sorter and n − 1 sort2 modules as follows. The n − 1
sort2 modules are connected to the n inputs and to each other in such a way that the largest
value is routed to a specific output of one of the sort2 modules. That specific sort2 output is
connected to output xn−1 of the n-element sorter. The other values connect to the (n− 1)-element
bad sorter, and the (n − 1)-element bad sorter outputs connect to outputs x0, x1, . . . , xn−2 of the
n-element bad sorter that we are constructing. Note that this generalizes the solution to Homework
1 Problem 2.

The description above is recursive. At level i (the same as n above) another i − 1 sort2

modules are used. For a 4-element sorter we need (4 − 1) + (3 − 1) + 1 = 6 sort2 modules. The
cost of an n-element bad sorter is found by solving the summation

∑
n

i=2
i− 1, which is n(n− 1)/2.

That’s O(n2), which is how the bad sorter got its name.
It gets worse. The critical path through the bad sorter can range from bad to awful. That

depends on two things: How the sort2 modules are used to find the largest value, and how the
sort2 modules connect to the (n− 1)-element bad sorter.

(a) Show the worst way that sort2 modules can be connected to find the largest value. Hint: the

critical path should be n− 1 sort2 modules. Provide a sketch for the general case, and an example
for n = 4.

(b) Show the worst way that the sort2 modules, as connected above, can connect to the (n − 1)-
element sorter. Provide a sketch.

(c) Determine the critical path for an n-element bad sorter constructed in the way described in the
last two parts. Hint: The math part should be familiar.

1

https://www.ece.lsu.edu/koppel/v/

(d) Show a much better way of connecting the sort2 modules to find the largest value. It should
be easy to show that the critical path is the lowest that is possible. Provide a sketch for n = 8.

The problem with the approach to building the bad sorters described in this assignment is
that each level in the recursion reduces the size by 1 (that is, from n to n− 1), and so the critical
path must be at least O(n). As some students may have realized, a better approach would be to
use recursion in which the n inputs were split between two n

2
-element networks and then somehow

combined. But how? The key insight, described by K. E. Batcher in a landmark 1968 paper, is
not to try to recursively describe a sorting network, but to instead recursively describe a network
that merges two already sorted sequences. The input to a 2-element merge network would be two
1-element sorted sequences. (Of course, every 1-element sequence is sorted.) Pairs of 2-element
merge networks feed a 4-element merge network, and so on. This will be further described later in
the semester.

2

