
Name Solution

Digital Design using HDLs

LSU EE 4755

Final Examination

Wednesday, 5 December 2018 15:00-17:00 CST

Alias In Color

Problem 1 (20 pts)

Problem 2 (25 pts)

Problem 3 (20 pts)

Problem 4 (10 pts)

Problem 5 (25 pts)

Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/

clk

mult_seq_d_prob_2 (w,m)
p
ro
d

a
c
c
u

m

iter

cand

plier

2w

2w

lg w/m

w

w

0

0

in
_
v
a
lid

0
1

o
u
t_
a
v
a
il

w+m

Unoptimized

2w

<<m-1:0

2m-1:m

3m-1:2m

w-1:w-m

m lg m
0

amt

0

n = w/m

w
-1

:w
-m �

0

n-1

>n-1

0

w
-1

-m
:w

-2
m

�

n-2

>n-2

0 �

1

>1

2
m

-1
:m

0

+

iter

iter

cand

iter

i=n-1 i=n-2 i=1

=

1

oa_new

sv_prod

Problem 1: [20 pts] Appearing to the right is the
hardware inferred for the Homework 7 Problem 2
module, the fast sequential multiplier which skipped
over zeros in the multiplicand.

(a) Notice that some hardware is circled in blue. Op-
timize that hardware and show the cost of the op-
timized hardware. The optimized hardware should
generate signals sv prod and oa new. If possible,
replace the multiplexors with simpler gates.

� Show optimized hardware.

Solution appears to the lower-right in purple.

�Cost of optimized hardware:

The ⌈lg n⌉-input NOR gate implementing iter==0 costs
[⌈lg n⌉ − 1] uc.

The new AND and OR gates cost 1 uc each. The existing (and
unchanged) three-input AND gate costs 2 uc. The total cost is
[⌈lg n⌉+ 3] uc.

clk

mult_seq_d_prob_2 (w,m)

p
ro
d

a
c
c
u

m

iter

cand

plier

2w

2w

lg w/m

w

w

0

in
_
v
a
lid

o
u
t_
a
v
a
il

w+m

Unoptimized

2w

<<m-1:0

2m-1:m

3m-1:2m

w-1:w-m

m lg m
0

amt

0

n = w/m

w
-1

:w
-m ≠

0

n-1

>n-1

0

w
-1

-m
:w

-2
m

≠

n-2

>n-2

0 ≠

1

>1

2
m

-1
:m

0

+

iter

iter

cand

iter

i=n-1 i=n-2 i=1

1

oa_new

sv_prod

2

clk

mult_seq_d_prob_2 (w,m)
p
ro
d

a
c
c
u

m

iter

cand

plier

2w

2w

lg w/m

w

w

0

0

in
_
v
a
lid

0
1

o
u
t_
a
v
a
il

w+m

Unoptimized

2w

<<m-1:0

2m-1:m

3m-1:2m

w-1:w-m

m lg m
0

amt

0

n = w/m

w
-1

:w
-m ≠

0

n-1

[n-1]

0

w
-1

-m
:w

-2
m

≠

n-2

0 ≠

1

2
m

-1
:m

0

+

iter

cand

iter

i=n-1 i=n-2 i=1

=

1

gt

[n-2] [1]

ngti-n

gtv

(b) In the version of the module appearing be-
low the > units have been replaced by one
module, gt, the changed hardware appears in
blue. As can be inferred from the diagram bit
i of the output of gt, gtv, is 1 iff i>iter. In
the Verilog code below gt is instantiated but it
is not being used. Modify the Verilog code so
that the existing for loop uses the output of
gt instead of the > operators. Pay attention
to the version of iter used by gt.

�Use gt output in existing for loop.

�Make sure that gt uses correct iter version.

module mult_seq_d_prob_2

#(int w = 16, int m = 2)

(output logic [2*w-1:0] prod,

output logic out_avail,

input uwire clk, in_valid,

input uwire [w-1:0] plier, cand);

localparam int n = (w + m - 1) / m;

localparam int iter_lg = $clog2(n);

uwire [n-1:0][m-1:0] cand_2d = cand;

bit [iter_lg-1:0] iter, next_iter;

logic [2*w-1:0] accum;

uwire [n-1:0] gtv;

uwire [iter_lg-1:0] gt_iter = (in˙valid ? 0 : iter); // � FILL IN

gt #(n,iter_lg) gti(gtv, gt_iter);

always_ff @(posedge clk) begin

if (in_valid) begin

iter = 0; accum = 0; out_avail = 0;

end else if (!out_avail && iter == 0) begin

prod = accum; out_avail = 1;

end

accum += plier * cand_2d[iter] << (iter * m);

next_iter = 0;

// for (int i=n-1; i>0; i--) if (i>iter && cand_2d[i]) next_iter = i;

for (int i=n-1; i>0; i--) if (gtv[i] && cand_2d[i]) next_iter = i;

iter = next_iter;

end

endmodule

3

Problem 2: [25 pts] The point of the gt module in the previous problem was to reduce cost, just in case
the synthesis program didn’t notice that the cost of computing each of n-1>iter, n-2>iter, . . ., 2>iter,
1>iter, would be less than n − 1 times the cost of computing one of them. The recursive module below
computes these quantities and can be used for the gt module from the previous problem.

module gtd_rec #(int n = 16, int lgn = $clog2(n))

(output logic [n-1:0] gt, input uwire [lgn-1:0] iter);

localparam int nh = n / 2; // Note: n must be a power of 2.

if (n == 2) begin

assign gt[0] = 0;

assign gt[1] = !iter[0];

end else begin

uwire [nh-1:0] gtlo;

gtd_rec #(nh) glo(gtlo, iter[lgn-2:0]);

localparam logic [nh-1:0] zeros = 0, ones = -1;

assign gt = iter[lgn-1] ? { gtlo, zeros } : { ones, gtlo };

end

endmodule

(a) Show the hardware that will be inferred for this module for an arbitrary value of n. In this case, do not
show what is inside the recursively instantiated module.

� Show hardware for arbitrary n > 2. (Don’t show recursive module contents.)

Solution appears below.

lsb

msb

gtd_rec, n, lgn

gtd_rec,

n/2, lgn-1iter

msb
1

l����

l��

'b11…11

l��

msb

'b00…00

�n�

�n�

�n�

gtn

n

n

g�	

4

(b) There should be a significant optimization opportunity in the hardware above. Show it.

� Show how the hardware will be optimized. The result should be AND, OR, and other basic logic gates.

Solution appears below. From the previous solution notice that the n/2 LSB of the lower mux input are all zeros. Therefore we can
optimize the three gates per bit, into just an AND gate using the inverted select signal. Similarly, the n/2 MSB of the upper mux
input are all 1’s, so we can optimize those bits into just an OR gate.

lsb

gtd_rec, n, lgn

gtd_rec,

n/2, lgn-1iter

msb 1

���

��

msb

��� gtn

���

��
����

��
����

��
�����1]

5

(c) Show the hardware that will be inferred for n = 8 after elaboration. That is, show the hardware inside
all of the recursive instantiations.

� Show hardware for n = 8. Show the contents of all recursively instantiated modules.

The solution appears below.

lsb

gtd_rec, n=8, lgn=3

iter

msb 1

3

msb

4 gt8

�������

����� �

�����!�

�����"�

�������

����� �

1'b0

1
1

msb

�#$

(d) Compute the cost and delay using the simple model. Show these in terms of n assuming that n is a
power of 2.

�Cost and � delay in terms of n.

The cost of the hardware for n = 2 is 0 (because with the simple model NOT gates are free!). The cost of the hardware for size
n = 2η , η > 1 is n gates plus the cost of a size n/2 module. The total cost for a module of size n = 2η , η > 1 is

η∑

l=2

2l = 2η+1 − 4 = (2n− 4) uc.

Since the critical path through each level is 1, the total delay is

η∑

l=2

1 ut = (η − 1) ut = (lg n− 1) ut.

6

Problem 3: [20 pts] Consider the module below.

module misc #(int n = 8)

(output logic [n-1:0] a, g, e,

input uwire [n-1:0] b, c, j, f, input uwire clk);

logic [n-1:0] z;

always_ff @(posedge clk) begin

a <= b + c; // Note: nonblocking assignment.

z = a + j;

g = z;

end

always_comb begin

e = a * f;

end

endmodule

(a) Show the hardware that will be inferred for the module above.

� Show inferred hardware. � Pay attention to what is and is not a register. � Clearly show module
ports.

Solution appears below. Registers are inferred for a and g because they are live out values of the always ff block. Because a
non-blocking assignment is used for a the previous value of a is used (the one before assigning b+c) when computing a+j.

b

c

+

f
e

j
z g

a

a

m%&'

+

clk

7

module misc #(int n = 8)

(output logic [n-1:0] a, g, e,

input uwire [n-1:0] b, c, j, f, input uwire clk);

logic [n-1:0] z;

always_ff @(posedge clk) begin // Code Position Label: alf

a <= b + c; // Note: nonblocking assignment.

z = a + j;

g = z;

end

always_comb begin // Code Position Label: alc

e = a * f;

end

endmodule

(b) Suppose that the event queue is empty at t = 10 when simulating the module above. Show the contents
of the event queue for the code above based on the following changes: At t = 10 j changes. At t = 12 clk

changes from 0 to 1. At t = 14 f changes.

� Show the state of the event queue from t = 10 until it is empty.

The solution appears below. Call the numbers along the top of the diagrams below steps. Step 1 shows the state of the event queue
at t = 10. At step 2 j changes. Object j is not in the sensitivity list for any piece of code so nothing happens, which is why step 3
is exactly like step 1. Sorry j. At step 6 clk changes from 0 to 1. Since clk is in the sensitivity list for the always ff block’s
event control, @(posedge clk), the simulator will put a resume event for that block, shown as alf, in the inactive region. At
step 7 the active region is empty, so the inactive region is copied into the active region and so the always ff block will execute in
step 9. (If there were several items in the active region, they would execute one at time.) In step 11 the a <= b+c line results in an
update event for a being scheduled in the NBA region, shown as Upd-a. When the Upd-a event executes it causes the always comb

block, shown as alc, to be scheduled because both a and f are on the sensitivity list for that block. Event alc executes at step 17,
after which there is no more work to do for t = 12. At t = 14 f changes causing alc to be seceduled again.

1
t = 10
active
inactive
nba

2
→

3
t = 10
active
inactive
nba

4
→

5
t = 12
active
inactive
nba

6
→

7
t = 12
active
inactive

alf
nba

8
→

9
t = 12
active

alf
inactive
nba

10
→

11
t = 12
active

alf
inactive
nba

Upd-a

12
→

13
t = 12
active
inactive
nba

Upd-a

14
→

15
t = 12
active

Upd-a

inactive
nba

16
→

17
t = 12
active
inactive

alc
nba

18
→

19
t = 12
active

alc
inactive
nba

20
→

21
t = 12
active
inactive
nba

22
→

23
t = 14
active
inactive
nba

24
→

25
t = 14
active
inactive

alc
nba

26
→

27
t = 14
active

alc
inactive
nba

28
→

29
t = 14
active
inactive
nba

8

Problem 4: [10 pts] Answer each question below.

(a) The module below is not compilable. Explain why and fix it based on what it looks like it is trying to
do.

module more

(input uwire [5:0] w,

input uwire [w-1:0] a, b,

output uwire [w:0] s);

assign s = a + b;

endmodule

// SOLUTION

module more

#(int w = 16)

(input uwire [w-1:0] a, b,

output uwire [w:0] s);

assign s = a + b;

endmodule

�Fix the problem.

�Describe the problem:

Packed vector dimensions must be specified using elaboration-time constants, but the dimensions of a, b, and s are specified in terms
of a module input, which is not a constant value. The fix assumes that w was supposed to be a module parameter.

9

(b) The module below is supposed to count cycles but it won’t work as written. Describe the problem and
fix it.

module tic_toc

(output logic [7:0] cycles,

input uwire clk, reset);

always_comb begin

if (reset) cycles = 0;

else if (clk) cycles = cycles + 1;

end

endmodule

// SOLUTION

module tic_toc

(output logic [7:0] cycles,

input uwire clk, reset);

always_ff @(posedge clk)

if (reset) cycles = 0; else cycles = cycles + 1;

endmodule

�Describe the problem:

The sensitivity list of the always comb module includes live-in values, including cycles in this case. But cycles is also a
live-out, and so there is the potential for an infinite loop since each change in cycle will cause the always comb to reëxecute.

�Fix the problem.

In the fixed code, appearing above, the always comb is replaced by an always ff.

10

Problem 5: [25 pts] Answer each question below.

(a) Appearing below is synthesis data showing the clock period of degree-m sequential workfront multipliers
and degree-m sequential regular (dm) multipliers for sizes m = 1, m = 2, m = 4, and m = 8.

Module Name Area Period Period Total

Target Actual Latency

mult_seq_wfront_m_w32_m1 191334 1000 3766 241024

mult_seq_wfront_m_w32_m2 205303 1000 3857 123424

mult_seq_wfront_m_w32_m4 260182 1000 5266 84256

mult_seq_wfront_m_w32_m8 351910 1000 7031 56248

mult_seq_dm_w32_m1 246818 1000 31113 995616

mult_seq_dm_w32_m2 279486 1000 30994 495904

mult_seq_dm_w32_m4 314724 1000 32127 257016

mult_seq_dm_w32_m8 408659 1000 31251 125004

As m increases the clock period of the workfront multiplier increases by a significant amount, while the
period of the sequential multiplier barely changes. Why?

�Why does the workfront period increase so much more than that of the regular multiplier?

The critical path of a degree-m workfront multiplier passes through m binary-full adders (BFAs), whereas the critical path for the
degree-m regular multiplier passes through m − 1 + 2w BFAs (or m − 1 + w for the streamlined version). For the workfront
multipliers the BFA part of the critical path length increases by a factor of 8 when the degree increases from m = 1 to m = 8. In
contrast the BFA component of the critical path for the regular multipliers increases by a factor of 64+7

64
≈ 1.11. That’s a much

smaller increase and its effect is harder to see (that is 1.11 × 31113 6= 31251) because the synthesis program can do more to
optimize longer critical path lengths.

Let pw(m) and pr(m) denote the clock period of the degree-m workfront and regular multipliers. Show
expressions for lw(m) and lr(m), the latencies of these multipliers.

�Finish the following expression for latency: lw(m) = pw(m) ×2⌈w/m⌉

Solution is boxed above. The workfront multiplier requires 2⌈w/m⌉ clock cycles to compute a solution. That’s twice as many
cycles as the regular multiplier, but the clock period is much lower.

�Finish the following expression for latency: lr(m) = pr(m) ×⌈w/m⌉

Solution is boxed above. The regular multiplier requires ⌈w/m⌉ clock cycles to compute a solution. That’s half the number of
cycles of workfront, but the period is much longer.

(b) The reasoning in the statement below is, as of this writing, incorrect. Provide the correct reason to not
spend time on multiplier modules.

“One should not spend time trying to develop efficient multiplication hardware because the synthesis program

is very good at optimizing logic and will synthesize something at least as good as a human can.”

�When working on a design that makes heavy use of multiplication one should just use multiplication operators
and not try to implement your own because:

The problem with the statement above is that as of this writing, we can’t expect a synthesis program to discover faster equivalent
versions of circuits that we enter for circuits of any complexity. For example, the synthesis program does not come close to optimizing
the behavioral merge module from Homework 5 to the performance of a Batcher merge module. There are two reasons for using
multiply operators. First, we expect that humans have provided the synthesis program with a library of different multiplier designs
that the synthesis program will choose from. We don’t expect our designs to be better than the designs produced by these humans.
The second reason is that by using multiplication operators rather than providing your own modules, the synthesis program might be
able to apply algebraic simplifications to some expressions.

11

(c) Sequential multipliers S0 and S1 have the same latency and cost, but the clock period for S1 is lower
than S0.

�Which is preferred? �Explain.

Both multipliers have the same cost, latency, and throughput. If no other factors are important then either one could be used.
Generally sequential logic uses more power at higher frequencies and so the higher clock period, and so S0, is preferred.

Note that since the clock period of S1 is lower, it must require more cycles to compute a product than S0. For example, suppose that
the period for S1 was 0.5 ns and the period for S0 was 1 ns. Suppose that S1 took 10 cyc to compute a product. The problem
states that the latency of S0 and S1 are the same, therefore S0 must take 5 cyc.

Pipelined multipliers P0 and P1 have the same latency and cost, but the clock period for P1 is lower than
P0.

�Which is preferred? �Explain.

Because these multipliers are pipelined the clock frequency determines throughput. Therefore P1, which has the higher higher clock
frequency, will have higher throughput.

12

(d) In the module below notice that cand_2d is no longer available. Modify the line updating accum to use
cand instead.

module mult_seq_dm #(int w = 16, int m = 2)

(output logic [2*w-1:0] prod,

input uwire [w-1:0] plier, cand, input uwire clk);

localparam int iterations = (w + m - 1) / m;

localparam int iter_lg = $clog2(iterations);

// uwire [iterations-1:0][m-1:0] cand_2d = cand;

bit [iter_lg:1] iter;

logic [2*w-1:0] accum;

always @(posedge clk) begin

if (iter == iter_lg’(iterations)) begin

prod = accum; accum = 0; iter = 0;

end

// � Fix line below

accum += plier * cand[m*iter +: m] << (iter * m);

iter++;

end

endmodule

Solution appears above. The solution uses an indexed range expression, m*iter +: m, to extract the m-bit slice from cand.
The m*iter specifies the position to start and the m is the number of bits. Unlike the part select operator, :, with the index-
range operators, +: and -:, the first operand does not need to be an elaboration-time constant. (The second operand must be an
elaboration-time constant for the part select and the index-range operators.)

The following is invalid Verilog: cand[m*(iter+1) -1 : m*iter], though it would retrieve the needed bits if
SystemVerilog 2017 weren’t so strict. It is invalid because with the ordinary slicing operator, :, both operands must be elaboration
time constants. Grading Note: Full credit was given for this answer since the indexed range operator was only

covered briefly.

13

	Problem 1
	Part a
	Part b

	Problem 2
	Part a
	Part b
	Part grrcount =subprobno elax advance grrcount by-97elax a
	Part grrcount =subprobno elax advance grrcount by-97elax a

	Problem 3
	Part a
	Part b

	Problem 4
	Part a
	Part b

	Problem 5
	Part a
	Part b
	Part grrcount =subprobno elax advance grrcount by-97elax a
	Part grrcount =subprobno elax advance grrcount by-97elax a

