
Name

Digital Design using HDLs

LSU EE 4755

Final Examination

Wednesday, 5 December 2018 15:00-17:00 CST

Alias

Problem 1 (20 pts)

Problem 2 (25 pts)

Problem 3 (20 pts)

Problem 4 (10 pts)

Problem 5 (25 pts)

Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/

clk

mult_seq_d_prob_2 (w,m)
p
ro
d

a
c
c
u

m

iter

cand

plier

2w

2w

lg w/m

w

w

0

0

in
_
v
a
lid

0
1

o
u
t_
a
v
a
il

w+m

Unoptimized

2w

<<m-1:0

2m-1:m

3m-1:2m

w-1:w-m

m lg m
0

amt

0

n = w/m

w
-1

:w
-m

�

0

n-1

>n-1

0

w
-1

-m
:w

-2
m

�

n-2

>n-2

0 �

1

>1

2
m

-1
:m

0

+

iter

iter

cand

iter

i=n-1 i=n-2 i=1

=

1

oa_new

sv_prod

Problem 1: [20 pts] Appearing to the right is the
hardware inferred for the Homework 7 Problem 2
module, the fast sequential multiplier which skipped
over zeros in the multiplicand.

(a) Notice that some hardware is circled in blue. Op-
timize that hardware and show the cost of the op-
timized hardware. The optimized hardware should
generate signals sv prod and oa new. If possible,
replace the multiplexors with simpler gates.

Show optimized hardware.

Cost of optimized hardware:

2

clk

mult_seq_d_prob_2 (w,m)
p
ro
d

a
c
c
u

m

iter

cand

plier

2w

2w

lg w/m

w

w

0

0

in
_
v
a
lid

0
1

o
u
t_
a
v
a
il

w+m

Unoptimized

2w

<<m-1:0

2m-1:m

3m-1:2m

w-1:w-m

m lg m
0

amt

0

n = w/m

w
-1

:w
-m ≠

0

n-1

[n-1]

0

w
-1
-m

:w
-2
m

≠

n-2

0 ≠

1

2
m
-1
:m

0

+

iter

cand

iter

i=n-1 i=n-2 i=1

=

1

gt

[n-2] [1]

ngti-n

gtv

(b) In the version of the module appearing be-
low the > units have been replaced by one
module, gt, the changed hardware appears in
blue. As can be inferred from the diagram bit
i of the output of gt, gtv, is 1 iff i>iter. In
the Verilog code below gt is instantiated but it
is not being used. Modify the Verilog code so
that the existing for loop uses the output of
gt instead of the > operators. Pay attention
to the version of iter used by gt.

Use gt output in existing for loop.

Make sure that gt uses correct iter version.

module mult_seq_d_prob_2

#(int w = 16, int m = 2)

(output logic [2*w-1:0] prod,

output logic out_avail,

input uwire clk, in_valid,

input uwire [w-1:0] plier, cand);

localparam int n = (w + m - 1) / m;

localparam int iter_lg = $clog2(n);

uwire [n-1:0][m-1:0] cand_2d = cand;

bit [iter_lg-1:0] iter, next_iter;

logic [2*w-1:0] accum;

uwire [n-1:0] gtv;

uwire [iter_lg-1:0] gt_iter = 0; // FILL IN

gt #(n,iter_lg) gti(gtv, gt_iter);

always_ff @(posedge clk) begin

if (in_valid) begin

iter = 0; accum = 0; out_avail = 0;

end else if (!out_avail && iter == 0) begin

prod = accum; out_avail = 1;

end

accum += plier * cand_2d[iter] << (iter * m);

next_iter = 0;

for (int i=n-1; i>0; i--) if (i>iter && cand_2d[i]) next_iter = i;

iter = next_iter;

end

endmodule

3

Problem 2: [25 pts] The point of the gt module in the previous problem was to reduce cost, just in case
the synthesis program didn’t notice that the cost of computing each of n-1>iter, n-2>iter, . . ., 2>iter,
1>iter, would be less than n − 1 times the cost of computing one of them. The recursive module below
computes these quantities and can be used for the gt module from the previous problem.

module gtd_rec #(int n = 16, int lgn = $clog2(n))

(output logic [n-1:0] gt, input uwire [lgn-1:0] iter);

localparam int nh = n / 2; // Note: n must be a power of 2.

if (n == 2) begin

assign gt[0] = 0;

assign gt[1] = !iter[0];

end else begin

uwire [nh-1:0] gtlo;

gtd_rec #(nh) glo(gtlo, iter[lgn-2:0]);

localparam logic [nh-1:0] zeros = 0, ones = -1;

assign gt = iter[lgn-1] ? { gtlo, zeros } : { ones, gtlo };

end

endmodule

(a) Show the hardware that will be inferred for this module for an arbitrary value of n. In this case, do not
show what is inside the recursively instantiated module.

Show hardware for arbitrary n > 2. (Don’t show recursive module contents.)

(b) There should be a significant optimization opportunity in the hardware above. Show it.

Show how the hardware will be optimized. The result should be AND, OR, and other basic logic gates.

4

(c) Show the hardware that will be inferred for n = 8 after elaboration. That is, show the hardware inside
all of the recursive instantiations.

Show hardware for n = 8. Show the contents of all recursively instantiated modules.

(d) Compute the cost and delay using the simple model. Show these in terms of n assuming that n is a
power of 2.

Cost and delay in terms of n.

5

Problem 3: [20 pts] Consider the module below.

module misc #(int n = 8)

(output logic [n-1:0] a, g, e,

input uwire [n-1:0] b, c, j, f, input uwire clk);

logic [n-1:0] z;

always_ff @(posedge clk) begin

a <= b + c; // Note: nonblocking assignment.

z = a + j;

g = z;

end

always_comb begin

e = a * f;

end

endmodule

(a) Show the hardware that will be inferred for the module above.

Show inferred hardware. Pay attention to what is and is not a register. Clearly show module
ports.

6

module misc #(int n = 8)

(output logic [n-1:0] a, g, e,

input uwire [n-1:0] b, c, j, f, input uwire clk);

logic [n-1:0] z;

always_ff @(posedge clk) begin // Code Position Label: alf

a <= b + c; // Note: nonblocking assignment.

z = a + j;

g = z;

end

always_comb begin // Code Position Label: alc

e = a * f;

end

endmodule

(b) Suppose that the event queue is empty at t = 10 when simulating the module above. Show the contents
of the event queue for the code above based on the following changes: At t = 10 j changes. At t = 12 clk

changes from 0 to 1. At t = 14 f changes.

Show the state of the event queue from t = 10 until it is empty.

7

Problem 4: [10 pts] Answer each question below.

(a) The module below is not compilable. Explain why and fix it based on what it looks like it is trying to
do.

module more

(input uwire [5:0] w,

input uwire [w-1:0] a, b,

output uwire [w:0] s);

assign s = a + b;

endmodule

Fix the problem.

Describe the problem:

(b) The module below is supposed to count cycles but it won’t work as written. Describe the problem and
fix it.

module tic_toc

(output logic [7:0] cycles,

input uwire clk, reset);

always_comb begin

if (reset) cycles = 0;

else if (clk) cycles = cycles + 1;

end

endmodule

Describe the problem:

Fix the problem.

8

Problem 5: [25 pts] Answer each question below.

(a) Appearing below is synthesis data showing the clock period of degree-m sequential workfront multipliers
and degree-m sequential regular (dm) multipliers for sizes m = 1, m = 2, m = 4, and m = 8.

Module Name Area Period Period Total

Target Actual Latency

mult_seq_wfront_m_w32_m1 191334 1000 3766 241024

mult_seq_wfront_m_w32_m2 205303 1000 3857 123424

mult_seq_wfront_m_w32_m4 260182 1000 5266 84256

mult_seq_wfront_m_w32_m8 351910 1000 7031 56248

mult_seq_dm_w32_m1 246818 1000 31113 995616

mult_seq_dm_w32_m2 279486 1000 30994 495904

mult_seq_dm_w32_m4 314724 1000 32127 257016

mult_seq_dm_w32_m8 408659 1000 31251 125004

As m increases the clock period of the workfront multiplier increases by a significant amount, while the
period of the sequential multiplier barely changes. Why?

Why does the workfront period increase so much more than that of the regular multiplier?

Let pw(m) and pr(m) denote the clock period of the degree-m workfront and regular multipliers. Show
expressions for lw(m) and lr(m), the latencies of these multipliers.

Finish the following expression for latency: lw(m) = pw(m)

Finish the following expression for latency: lr(m) = pr(m)

(b) The reasoning in the statement below is, as of this writing, incorrect. Provide the correct reason to not
spend time on multiplier modules.

“One should not spend time trying to develop efficient multiplication hardware because the synthesis program

is very good at optimizing logic and will synthesize something at least as good as a human can.”

When working on a design that makes heavy use of multiplication one should just use multiplication operators
and not try to implement your own because:

9

(c) Sequential multipliers S0 and S1 have the same latency and cost, but the clock period for S1 is lower
than S0.

Which is preferred? Explain.

Pipelined multipliers P0 and P1 have the same latency and cost, but the clock period for P1 is lower than
P0.

Which is preferred? Explain.

10

(d) In the module below notice that cand_2d is no longer available. Modify the line updating accum to use
cand instead.

module mult_seq_dm #(int w = 16, int m = 2)

(output logic [2*w-1:0] prod,

input uwire [w-1:0] plier, cand, input uwire clk);

localparam int iterations = (w + m - 1) / m;

localparam int iter_lg = $clog2(iterations);

// uwire [iterations-1:0][m-1:0] cand_2d = cand;

bit [iter_lg:1] iter;

logic [2*w-1:0] accum;

always @(posedge clk) begin

if (iter == iter_lg’(iterations)) begin

prod = accum; accum = 0; iter = 0;

end

// Fix line below

accum += plier * cand_2d[iter] << (iter * m);

iter++;

end

endmodule

11

	Problem 1
	Part a
	Part b

	Problem 2
	Part a
	Part b
	Part grrcount =subprobno
elax advance grrcount by-97
elax a
	Part grrcount =subprobno
elax advance grrcount by-97
elax a

	Problem 3
	Part a
	Part b

	Problem 4
	Part a
	Part b

	Problem 5
	Part a
	Part b
	Part grrcount =subprobno
elax advance grrcount by-97
elax a
	Part grrcount =subprobno
elax advance grrcount by-97
elax a

