
LSU EE 4755 Homework 5 Due: 10 November 2017

For instructions visit http://www.ece.lsu.edu/koppel/v/proc.html. For the complete Ver-

ilog for this assignment without visiting the lab visit

http://www.ece.lsu.edu/koppel/v/2017/hw05.v.html.

Problem 1: Module lookup_char has a w-bit input char, and two outputs, found and idx.
The module has parameter chars, which is an n-element array of w-bit characters. Complete
lookup_char so that output found is logic 1 iff char is equal to one of the elements of chars. Set
idx to the index of that character. (That is, if found is 1 then chars[idx] == char.) It does not
matter what idx is if the character is not found. The module should synthesize into combinational
logic.

See the Verilog Problem 1 code for details on the parameters and ports and review the comment
checkboxes at the top of the problem for additional tips.

Module lookup_char will be used in the next problem and the testbench will be able to test
lookup_char even if no other parts of nest are finished.

Note: There is a 2016 EE 4755 homework assignment in which a module a lot like lookup_char
had to be designed. The major difference is that in 2016 the chars array was a port, here it is a
parameter. Feel free to look at the solutions. It should go without saying that the chars array
should remain a parameter in this assignment.

Problem 2: Module nest, when completed, will monitor a sequence of characters that includes
bracketing characters (such as parentheses) and indicate whether these bracketing characters are
properly nested. For example, sequence “a()[d()e[f]]” is properly nested but “a(]” is not.

The module has input parameters char_open and char_close, each of these is an n-element
array of w-bit characters listing characters that are to be treated as opening and closing bracketing
characters. See the Verilog code for details. The module has three inputs, clk, reset, and in_char.
The module has five outputs, level, awaiting, is_open, is_close, and bad.

Output is_open should be set to 1 iff in_char is one of the characters in char_open, and
is_close should be set to 1 iff in_char is one of the characters in char_close. These outputs
should be generated by instantiations of lookup_char (the module from the first problem). The
logic for computing is_open and is_close should be combinational.

(a) Complete the logic for is_open and is_close as described above. The testbench checks these
outputs for correctness, look for op and cl in the trace. They are correct if er does not appear to
the right of the 0 or 1. The module must be synthesizable.

The module has an output level which should operate as follows. On a positive clock edge
if reset is 1, level is set to zero. Otherwise, if in_char is in char_open then level should be
incremented and if in_char is in char_close then level should be decremented. If in_char is in
neither list then level is left unchanged. (level provides the current nesting level. A value of 0
indicates the current character is not “inside” any bracketing characters, or put another way, that
we are not awaiting something like a closing parenthesis.)

The module has an output bad which indicates whether the sequence seen since the last reset
is improperly nested or if the nesting level exceeded d, a module parameter. Set bad to 0 when
reset is 1 (at a positive clock edge). Set bad to 1 if a closing character is seen when level is 0 or
if an opening character is seen when level is d.

Also set bad to 1 if the wrong closing character is seen. For example, for “(]” set bad to 1
when the “]” is seen because a “)” was expected.

1

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/proc.html
http://www.ece.lsu.edu/koppel/v/2017/hw05.v.html

Output awaiting should be set to the next valid closing character. For example, if the sequence
so far is “()[” awaiting should be set to “]”.

When bad is 1 outputs level and awaiting can be set to any value.
Note that bad, level, and awaiting should be updated at the positive clock edge.

(b) Complete nest so that it works as described above. The module must be synthesizable and
show no errors.

The testbench checks nest for correctness and at the end of a run it shows the number of
errors. As of this writing it will test nest on 1000 different sequences, see variable num_groups in
the testbench. It will print details on up to 2 sequences with zero errors and up to 3 sequences
with at least one error. Feel free to edit the testbench to change these numbers.

Consider the following sample of testbench output:
ncsim> run

cyc 2 s.c 0. 0 i op 0 cl 0 bad 0 lev 0 0 await ’)’

cyc 3 s.c 0. 1 J op 0 cl 0 bad 0 lev 0 0 await ’)’

The text cyc 2 indicates the cycle number. That can be used with SimVision or some other
tool to locate the place in execution. The text s.c 0. 1 shows the sequence number, 0, and the
number of previous characters in the sequence, 1. Next shown is the character at in_char, J in
cycle 3. The text op 0 cl 0 bad 0 show the values of the is_open, is_close, and bad outputs
that nest has produced. If these values are wrong then the text er appears to the right of the
value. For example if the value at the is_open port were wrong the text would be op 0 er . Note
that bad 1 is fine but bad 0 er indicates that the bad port value is wrong. The text lev 0 0

shows both the module level output (the first 0 here) and the known correct value (the second 0).
Finally, await shows the module output followed by the correct value. They are between quotes
to make spaces and other non-printable characters obvious.

Note that when level is zero the value of await is irrelevant. Also, when bad is 1, the values of
level and await are both irrelevant.

The example below shows the trace output when there are errors:
cyc 54 s.c 5. 0 L op 0 cl 0 bad 0 lev 0 0 await ’)’

cyc 55 s.c 5. 1 (op 1 cl 0 bad 0 lev 0 1 er await ’)’

cyc 56 s.c 5. 2 (op 1 cl 0 bad 0 lev 0 2 er await ’)’

cyc 57 s.c 5. 3 q op 0 cl 0 bad 0 lev 0 2 er await ’)’

cyc 58 s.c 5. 4 Z op 0 cl 0 bad 0 lev 0 2 er await ’)’

cyc 59 s.c 5. 5) op 0 cl 1 bad 1 er lev 7 1 await ’)’

cyc 60 s.c 5. 6) op 0 cl 1 bad 1 er lev 6 0 await ’)’

At cycle 55 level should have been incremented for the “(“, but it was not. Notice the er to
the right of lev. Also, at cycle 59 the module set bad to 1 which is an error because the sequence
has not violated any rules.

Problem 3: Run the synthesis script, using command rc -files syn.tcl. If it runs correctly,
a file spew-file.log will be created which contains a timing report for a design. On paper or in
comments in the submission file, indicate where the critical path is in your design.

Provide suggestions on making it faster, or explain what you actually did for a high clock
frequency.

2

