Start working on the solutions to the problems below on paper, but complete them using the computers in the lab. For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete Verilog for this assignment without visiting the lab visit https://www.ece.lsu.edu/koppel/v/2017/hw01.v.html.

Problem 1: Appearing below, and in hw01.v, is a Verilog description of a 2-input multiplexer, mux2, and a partially completed description of a 4-input mux, mux4, along with a diagram showing how a four-input mux can be made using three two-input multiplexers. Complete mux4 as described in the diagram.

It is important that mux4 instantiate three mux2 modules. Other correct 4-input multiplexer implementations will not receive credit. Also, don’t forget to set the parameters correctly when instantiating modules.

```verilog
module mux2
  #( int w = 16 )
  ( output uwire [w-1:0] x,
    input uwire s,
    input uwire [w-1:0] a, b );

  assign x = s == 0 ? a : b;
endmodule

module mux4
  #( int w = 6 )
  ( output uwire [w-1:0] x,
    input uwire [1:0] s,
    input uwire [w-1:0] a[3:0] );
endmodule
```
Problem 2: Appearing below is a `mux8` module. Complete `mux8` so that it implements an 8-input multiplexer using two `mux4` modules and one `mux2` module. Notice that the data input to `mux8` is an 8-element array of `w`-bit quantities. To see how to extract a subrange of an array (called a *part select* in Verilog) see the `testbench` module. Solve this problem by generalizing the technique appearing in the previous problem.

Credit will only be given for `mux8` modules that *Instantiate* two `mux4` modules and a `mux2` module. Yes, `assign x = a[s];` is correct and the best way to do it in other situations, but the goal here is to learn about instantiation.

```
module mux8#
  ( int w = 5 )
  ( output uwire [w-1:0] x,
    input uwire [2:0] s,
    input uwire [w-1:0] a[7:0] );

endmodule
```

Appearing below is the start of the `testbench` code. To see the complete testbench and other modules follow https://www.ece.lsu.edu/koppel/v/2017/hw01.v.html.

```
module testbench();

localparam int w = 10;
localparam int n_in_max = 8;
localparam int n_mut = 3;

uwire [w-1:0] x[n_mut];
logic [2:0] s;
logic [w-1:0] a[n_in_max-1:0];

mux2 #(w) mm2(x[0], s[0], a[0], a[1]);
mux4 #(w) mm4(x[1], s[1:0], a[3:0]);
mux8 #(w) mm8(x[2], s[2:0], a[7:0]);

initial begin
  automatic int n_test = 0;
  automatic int n_err = 0;
```