
Name Solution

Digital Design using HDLs

LSU EE 4755

Final Examination

Wednesday, 6 December 2017 15:00-17:00 CST

Alias Pie Plain

Problem 1 (15 pts)

Problem 2 (25 pts)

Problem 3 (20 pts)

Problem 4 (10 pts)

Problem 5 (30 pts)

Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/

Problem 1: [15 pts] The Verilog code below is the solution to Problem 1a of Homework 7. Below that is
the hardware for a slightly different pipelined multiplier. Modify the hardware to match the Verilog code.
Changes need to be made for each line commented DIFFERS.

�Modify hardware to reflect Verilog.

module mult_fast_1a #(int w = 16, int m = 4)

(output uwire [2*w-1:0] prod,

output uwire out_avail, input uwire clk, in_valid, // � DIFFERS

input uwire [w-1:0] plier, cand);

localparam int nstages = (w + m - 1) / m;

logic [2*w-1:0] pl_accum[0:nstages];

logic [w-1:0] pl_plier[0:nstages], pl_cand[0:nstages];

logic pl_occ[0:nstages]; // � DIFFERS

assign prod = pl_accum[nstages];

assign out_avail = pl_occ[nstages]; // � DIFFERS

always_ff @(posedge clk) begin

pl_occ[0] = in_valid; // � DIFFERS

pl_accum[0] = 0; pl_plier[0] = plier; pl_cand[0] = cand;

for (int stage=0; stage<nstages; stage++) begin

pl_plier[stage+1] <= pl_plier[stage];

pl_accum[stage+1] <= pl_accum[stage] + (pl_plier[stage]

* pl_cand[stage][m-1:0] << stage*m); // � DIFFERS

pl_cand[stage+1] <= pl_cand[stage] >> m; // � DIFFERS

pl_occ[stage+1] <= pl_occ[stage]; // � DIFFERS

end

end

endmodule

clk
2w

mult_fast_1a w=16, m=4

w

0

w

ls
b

m
s
b

4'b0

+

p
l_
a
c
c
u
m
[1
]

p
l_
p
li
e
r[
1
]

p
l_
c
a
n
d
[1
]

w

7:4

p
l_
a
c
c
u
m
[2
]

p
l_
p
li
e
r[
2
]

p
l_
c
a
n
d
[2
]

p
l_
a
c
c
u
m
[3
]

p
l_
p
li
e
r[
3
]

p
l_
c
a
n
d
[3
]

p
l_
a
c
c
u
m
[4
]

p
l_
p
li
e
r[
4
]

p
l_
c
a
n
d
[4
]

pl_accum[0]

pl_cand[0]

pl_plier[0]
plier

cand

prod

2w2w

w
×

w

+

w

3:0

×

w

ls
b

m
s
b

8'b0

+

w

11:8

2w

×

w

ls
b

m
s
b

12'b0

+

w

15:12

2w

×

p
l_
o
c
c
[1
]

msb

m
0

w-1:m

m-1:0

p
l_
o
c
c
[2
]

p
l_
o
c
c
[3
]

in_valid

p
l_
o
c
c
[4
] out_

avail

msb

m
0

w-1:m

m-1:0 m-1:0

msb

m
0

w-1:m

msb

m
0

w-1:m

m-1:0

Solution appears above in blue. A straightforward addition is the pipeline latch, pl occ, to pass the in valid signal. The other
change is in the way that the multiplicand is passed from stage to stage. In the original design the multiplicand (cand) was passed

2

unchanged. But in the Verilog description above the multiplicand is shifted by m bits each stage. With that change all the multipliers
can look at the m least significant bits rather that a different slice each stage. This change in the way the multiplicand is handled
makes no difference in the cost of the hardware. Either way a decent synthesis program should figure out which bits in pl cand will
never be used and optimize them out.

3

Problem 2: [25 pts] Module oldest_find_plan_b, illustrated below, is based on an alternative solution

to Homework 7 Problem 1b. Below the hardware illustration is incomplete Verilog code for this module.
The Verilog code uses abbreviated names, such as ns, comments show the original names from the assign-
ment, such as nstages. Complete the module. Note: This problem can be solved without having ever seen

Homework 7, though not as quickly.

oldest_find_plan_b w, ns

ns+1

[w][ns+1]

0
=

ca[0]

0
=

ca[1]

0
=

ca[ns]

0

1 2 ns

w

w

w

oc[1] oc[2] oc[ns]

0
avail�

ox

oc

ca

1+�lg ns⌉

� Complete the module so that it matches the hardware above.

module oldest_find_plan_b

#(int w = 15, int ns = 3 /* nstages */)

(output logic [$clog2(ns):0] ox, // oldest_idx

output uwire avail, // out_avail

input uwire oc[0:ns], // pl_occ

input uwire [w-1:0] ca[0:ns]); // pl_cand

/// SOLUTION

// Compute ox (oldest_idx). This is similar to the Homework 7 solution

//

always_comb begin

ox = 0;

for (int i=1; i<=ns; i++) if (oc[i]) ox = i;

end

// Determine whether *each* element of ca is zero.

//

logic [0:ns] cz;

always_comb for (int i=0; i<=ns; i++) cz[i] = ca[i] == 0;

assign out_avail = ox != 0 && cz[ox];

endmodule

4

Problem 3: [20 pts] Appearing below are two variations on the oldest index module from the previous
problem. The Plan A version is based on the code from the posted Homework 7 solution. The Plan B
module is slightly different.

(a) Compute the cost of each module based on the simple model after optimizing for constant values. Use
symbol w (for w) and n (for ns). Base the cost of an α-input, β-bit multiplexor on the tree (recursive)
implementation. Recall that the tree implementation consists of α− 1 two-input multiplexors arranged in a
tree.

� Plan A cost in terms of w and n. � Show cost components on diagram, such as cost of big mux, �
don’t forget to account for the constant inputs, and � for the number of bits in each wire.

oldest_�nd_plan_a w, ns

ns+1

[w][ns+1]

0

ca[0]

ca[1]

ca[ns]

0

1 2 ns

w

w

w

oc[1] oc[2] oc[ns]

0
avail≠

ox

oc

ca

1+⌈lg ns⌉

=

The lower input to each of the 2-input muxen is con-
stant, so the cost per bit of each multiplexor is at
most 1. At most because in some cases, such as
the first, the upper input is also constant. The num-
ber of bits for the first mux is 1 and the number of
bits for the last multiplexor is ⌈lg n⌉ (because the
largest input to any mux is n and it takes ⌈lg n⌉
bits to represent n as an unsigned integer). To keep
things simple assume that all of the 2-input muxen are
⌈lg n⌉ bits wide. Then the total cost of the n − 2
2-input muxen is (n− 2)⌈lg n⌉.

The big mux has n + 1 inputs, each w bits wide.
The total cost is (n+ 1− 1)3w = 3wn units.

The 6= 0 unit can be realized using a ⌈lg n⌉-input OR gate, and the = 0 unit can be realized using a w-input NOR gate. The costs
are the number of inputs minus one. The total cost is:

2-input muxen
︷ ︸︸ ︷

(n− 2)⌈lg n⌉ +

6= 0
︷ ︸︸ ︷

⌈lg n⌉ − 1+

Big Mux
︷︸︸︷

3nw +

= 0
︷ ︸︸ ︷

w − 1+

AND
︷︸︸︷

1

� Plan B cost in terms of w and n. � Show cost components on diagram, such as cost of big mux, �
don’t forget to account for the constant inputs and, � for the number of bits in each wire.

oldest_�nd_plan_b w, ns

ns+1

[w][ns+1]

0
=

ca[0]

0
=

ca[1]

0
=

ca[ns]

0

1 2 ns

w

w

w

oc[1] oc[2] oc[ns]

0
avail≠

ox

oc

ca

1+⌈lg ns⌉

In Plan B the = 0 comparison is done before the
big mux, and so n+ 1 comparison units are needed.
Sounds costly. But, the inputs to the big mux are 1,
rather than w bits wide. For Plan A the big cost term
is 3nw (assuming that w > lg n). In Plan B the

big cost term is just nw, which is 1

3
the cost!

The total cost is:

2-input muxen
︷ ︸︸ ︷

(n− 2)⌈lg n⌉ +

6= 0
︷ ︸︸ ︷

⌈lg n⌉ − 1+

= 0
︷ ︸︸ ︷

(n+ 1)(w − 1)+

Big Mux
︷︸︸︷

3n +

AND
︷︸︸︷

1

5

(b) Show the delay along all paths and show the critical path. Compute delay based on the simple model
after optimizing for constant values. Use the tree mux described in the previous part.

� Plan A: � show delay along all paths, � highlight the critical path, � and show the delay through
each component. Show these � in terms of w and n, and � account for constant inputs such as the
zeros in the equality units.

oldest_�nd_plan_a w, n

n+1

[w][n+1]

0

ca[0]

ca[1]

ca[n]

0

1 2 n

w

w

w

oc[1] oc[2] oc[n]

0
avail≠

ox

oc

ca

=

0

0 1

n-1
n-2

1 10

2⌈lg n+1⌉

n-1

⌈lg w⌉

n�� � 2⌈lg n+1⌉

⌈lg ⌈lg n+1⌉⌉

1

n�� � 2⌈lg n+1⌉

+ ⌈lg w⌉

n
-1

+
 2
⌈lg

 n
+

1
⌉

+
 ⌈lg

 w
⌉ +

 1

n-1
Solution appears to the right. The delay through each de-
vice is shown in blue, the time at which a signal is available

is shown in purple , and the critical path is shown as a
red dashed line. Because the 2-input multiplexors have at
least one constant input, the delay through them is 1 unit
each. The delay through the big mux, which is n + 1
inputs, is 2⌈lg n + 1⌉ units, the usual delay though an
n + 1-input tree mux. Both comparison units compare
to a constant, their delays are ceiling-log-base-2 of the
number of inputs.

A common mistake was to overlook the possibility that
the critical path can pass through a multiplexor select
input, as it does here.

� Plan B: � show delay along all paths, � highlight the critical path, � and show the delay through
each component. Show these � in terms of w and n, and � account for constant inputs such as the
zeros in the equality units.

oldest_�nd_plan_b w, n

n+1

[w][n+1] ca[0]

ca[1]

ca[n]

0

1 2 n

w

w

w

oc[1] oc[2] oc[n]

0
avail≠

ox

oc

ca

0

0 1

n-1
n-2

1 10

2⌈lg n+1⌉

n-1⌈lg w⌉

n-1 + 2⌈lg n+1⌉

⌈lg ⌈lg n+1⌉⌉

1

n
-1

 +
 2
⌈lg

 n
+

1
⌉ +

 1

n-1

0
=

0
=

0
=

Solution appears to the right, with delays, times, and crit-

ical path using the same colors as above. Doing the = 0
check before the mux reduces the length of the critical
path by lgw.

Note that in both the Plan A and Plan B versions the delay
through the 2-input muxen is n−1. It is possible that the
synthesis program could find an optimization that would
reduce the delay to something closer to lg n. A human,
at least one who payed attention in EE 4755, should be
able to do that with no problem.

6

Problem 4: [10 pts] Explain why each of the modules below is not synthesizable by Cadence Encounter
(or similar tools) and modify the code so that it is without changing what the module does. Note: The

warning about not changing what the module does was not in the original exam.

module one_run #(int w = 16, int lw = $clog2(w))

(output logic all_1s, input uwire [w-1:0] a, input uwire [lw:0] start, stop);

always_comb begin

all_1s = 1;

// for (int i=start; i<stop; i++) all_1s = all_1s && a[i];

// SOLUTION Below

for (int i=0; i<w; i++)

if (i >= start && i<stop) all_1s = all_1s && a[i];

end

endmodule

� Reason code above is not synthsizable:

The number of iterations in the for loop depends on non-constant expressions. To be synthesizable the synthesis program must
be able to determine the number of loop iterations of an instantiated module. It can’t in the module above because the number of
iterations depends on the module inputs start and stop.

�Modify code so that it is.

Short Answer: Solution appears above.

Explanation: The lower loop bound has been changed from start to 0, a constant (literally a literal). The upper bound has been
changed from stop to w, an elaboration-time constant. The original code is shown commented out.

module running_sum #(int w = 32)

(output logic [w-1:0] rsum,

input uwire [w-1:0] a, input uwire reset, clk);

// always @(posedge clk) if (reset) rsum <= 0;

// always @(posedge clk) rsum <= rsum + a;

// SOLUTION Below

always @(posedge clk) begin

if (reset) rsum <= 0;

else rsum <= rsum + a;

end

endmodule

�Modify code so that it is synthsizable.

Solution appears above.

� Reason code above was not synthsizable:

Because rsum is assigned in two always blocks. To be synthesizable a value cannot be assigned in more than one always block.

� Explain assumption about intended behavior of this module.

Assumed that when reset is 1 at a positive edge rsum should be set to 0 rather than a.

7

Problem 5: [30 pts] Answer each question below.

(a) Show when each piece of code below executes (use the C labels) up until the start of C5c, and show when

and in which region each piece is scheduled. See the table below.

module eq;

logic [7:0] a, b, c, d, x, y, x1, x2, y1, y2, z2;

always_comb begin // C1

x1 = a + b;

y1 = 2 * b;

end

assign x2 = 100 + a + b; // C2

assign y2 = 4 * b; // C3

assign z2 = y2 + 1; // C4

initial begin

// C5a

a = 0;

b = 10;

#2;

// C5b

a = 1;

b <= 11;

#2;

// C5c

a = 2;

b = 12;

end

endmodule

� Continue the diagram below so that it shows scheduling up to the point where C5c executes.

Step 1

t = 0
Active

C5a
ր

Inactive

NBA

Step 2

t = 0
Active

Inactive

C1

C2

C3
NBA

t = 2
Inactive

C5b

Step 3

t = 0
Active

Solution on next page.

8

Solution appears below.

Note that when the active region is empty the first non-empty region is bulk-copied into the active region. This occurs, for example,
between Step 2 and 3, step 6 and 7. (Warning: step numbers may eventually become wrong. Please report any errors.) Simulation
time (shown as t =) changes when all regions within the current time step are empty. This occurs at step 8 and step 21.

Step 1

t = 0
Active

C5aր

Inactive

NBA

Step 2

t = 0
Active

Inactive

C1

C2

C3
NBA

t = 2
Inactive

C5b

Step 3

t = 0
Active

C1ր

C2

C3
Inactive

NBA

t = 2
Inactive

C5b

Step 4

t = 0
Active

C2ր

C3
Inactive

NBA

t = 2
Inactive

C5b

Step 5

t = 0
Active

C3ր

Inactive

NBA

t = 2
Inactive

C5b

Step 6

t = 0
Active

Inactive

C4
NBA

t = 2
Inactive

C5b

Step 7

t = 0
Active

C4ր

Inactive

NBA

t = 2
Inactive

C5b

Step 8

t = 0
Active

Inactive

NBA

t = 2
Inactive

C5b

Step 9

t = 2
Active

C5bր

Inactive

NBA

Step 10

t = 2
Active

Inactive

C1

C2
NBA

b← 11
t = 4
Inactive

C5c

Step 11

t = 2
Active

C1ր

C2
Inactive

NBA

b← 11
t = 4
Inactive

C5c

Step 12

t = 2
Active

C2ր

Inactive

NBA

b← 11
t = 4
Inactive

C5c

Step 13

t = 2
Active

Inactive

NBA

b← 11
t = 4
Inactive

C5c

Step 14

t = 2
Active

b← 11ր

Inactive

NBA

t = 4
Inactive

C5c

Step 15

t = 2
Active

Inactive

C1

C2

C3
NBA

t = 4
Inactive

C5c

Step 16

t = 2
Active

C1ր

C2

C3
Inactive

NBA

t = 4
Inactive

C5c

Step 17

t = 2
Active

C2ր

C3
Inactive

NBA

t = 4
Inactive

C5c

Step 18

t = 2
Active

C3ր

Inactive

NBA

t = 4
Inactive

C5c

Step 19

t = 2
Active

Inactive

C4
NBA

t = 4
Inactive

C5c

Step 20

t = 2
Active

C4ր

Inactive

NBA

t = 4
Inactive

C5c

Step 21

t = 2
Active

Inactive

NBA

t = 4
Inactive

C5c

Step 22

t = 4
Active

C5cր

Inactive

NBA

9

(b) Which of the two modules does what it looks like it’s trying to do? Explain.

module sa1(input logic [7:0] a, b, c, d, output wire [7:0] x, y);

assign x = a + b;

assign y = 2 * x;

assign x = c + d;

endmodule

module sa2(input logic [7:0] a, b, c, d, output logic [7:0] x, y);

always_comb begin

x = a + b;

y = 2 * x;

x = c + d;

end

endmodule

�Module that is probably correct is:

It is sa2 that looks correct because the other module, . . .

�Major problem with other module.

. . . sa1, is using continuous assignments as though they were procedural statements. In particular x is assigned twice.

� Provide a possible wrong answer from other module.

If a+b is not equal to c+d then x will have some bits set to the undefined state. So a possible wrong answer is that x =

7’b0001xxxx. This would occur when a+b = 7’b00011010 and c+d = 7’b00010101.

10

(c) Define throughput and latency and indicate where each is preferred. Provide examples appropriate for
pipelined systems.

� Throughput is:

The amount of work completed per unit time.

� For example:

In a pipelined multiplier with n stages running at a clock frequency φHz the throughput is φ multiplications per second. If
φ = 1GHz the throughput would be 109 multiplications per second.

� Latency is:

The amount of time from start to finish of one piece of work.

� For example,

In the pipelined system the latency is n
φ
s. Suppose n = 5 and φ = 1GHz. Then the clock period is 1

φ
= 1ns and the latency

is 5× 1 ns = 5ns.

� If the goal is to improve throughput is higher throughput good or bad?

Higher throughput is good.

� If the goal is to improve latency, is higher latency good or bad?

Higher latency is bad. (Lower latency is good.)

� In what situation is latency more important than throughput?

Latency is more important than throughput when someone or something is waiting for the result and when that someone or something
isn’t doing anything useful while waiting.

(d) When we synthesize we specified a target delay, for example, 400 ns.

� Does specifying a larger delay mean that there will be less optimization?

No.

� Explain.

Short Answer: Synthesis programs typically optimize to minimize cost while meeting timing constraints. Cost is optimized regardless
of the delay target.

Additional Explanation: With a smaller delay target the synthesis program might be forced to use higher-cost alternatives to meet
the timing constraints. Though transforming a design to meet timing constraints is certainly considered optimization, it is not the
only type of optimization performed.

11

