
Name Solution

Digital Design using HDLs

EE 4755

Midterm Examination

Friday, 21 October 2016 12:30–13:20 CDT

Alias Loose bits sink chips.

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (10 pts)

Problem 5 (10 pts)

Problem 6 (20 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/v/

Problem 1: [20 pts] Write a Verilog description of the hardware illustrated below. The description must
include the modules and instantiations as illustrated. The description can be behavioral or structural, but
it must be synthesizable.

ma1

ma2

mod a

a

b

c

y mod a

a

b

c

y
0:0

1:1

2:2

3:3

e

f

mod b

x

w

�Verilog corresponding to illustrated hardware.

� Show instantiations, �Verilog for instantiated module(s), � and all module ports.

Solution appears below.

Grading Note: Many students chose to provide an explicit structural description, which is the most tedious
descriptive style. In an explicit structural description moda uses four primitive instantiations plus a dec-
laration for three wires. As can be seen from the solution the implicit structural description is just one
line.

In many solutions for modb the output of ma2 was connected to an intermediate uwire, and an assign

statement was used to connect the uwire to the module output. As can be seen from the solution, the ma2

output can connect directly to the modb output.

// SOLUTION

module moda(output uwire y, input uwire c, a, b);

assign y = a && c || a && b || b && c;

endmodule

module modb(output uwire x, w, input uwire [3:0] e, input uwire f);

uwire y1;

moda ma1(y1,f,e[0],e[1]);

moda ma2(w,y1,e[2],e[3]);

assign x = y1 ^ w;

endmodule

2

Problem 2: [20 pts] Appearing below is the lookup_elt module from Homework 4 and following that an
incomplete module named match_amt_elt. Complete match_amt_elt so that the value at output port md is
set to the number of bits in clook that match corresponding bits in celt. For example, if clook=5’b00111
and celt=5’b00111 then md should be 5, if clook=5’b00101 and celt=5’b00111 then md should be 4,
and if clook=5’b11000 and celt=5’b00111 then md should be 0. Code must be synthesizable, but can be
behavioral or structural.

�Complete the module so that md is set to the number of matching bits.

�Make sure that md is declared with sufficient width.

module lookup_elt #(int charsz = 32) // This module is for reference only.

(output logic match, input uwire [charsz-1:0] char_lookup, char_elt);

always_comb match = char_lookup == char_elt;

endmodule

The solution appears below.

For the size of md, notice that md must represent charsz+1 distinct values, 0 to charsz. Therefore clog2(charsz+1) bits
are needed. Grading note: Full credit was given for almost any declaration that contained clog2(charsz), not
just those which were perfectly correct. Points were deducted for constant answers such as [5:0] since they
only work for the default value of charsz.

To count the number of matching bits a loop is used to iterate over the bits and a simple comparison is used to find matches.

Grading Notes: There was no reason to use lookup elt, it was put in the problem only to help people get
started. A correct solution could use lookup elt, however it had to be instantiated with a charsz=1.

In too many solutions there was confusion between procedural code (code starting with some kind of always)
and structural code (module declarations and assign statements).

module match_amt_elt

#(int charsz = 32)

(output logic [$clog2(charsz+1)-1:0] md, // SOLUTION (The [$clog..])

input uwire [charsz-1:0] clook,

input uwire [charsz-1:0] celt);

// SOLUTION

always_comb begin

md = 0;

for (int i=0; i<charsz; i++) if (clook[i] == celt[i]) md++;

end

endmodule

3

Problem 3: [20 pts] Show the hardware that will be synthesized for the modules below.

(a) Show the hardware that will be inferred for the module below. Show acme_ip_sqrt as a box.

module vmag(output uwire [31:0] mag, input uwire signed [31:0] v [3]);

logic [63:0] sos;

acme_ip_sqrt #(32) s1(mag,sos);

always_comb begin

sos = 0;

for (int i=0; i<3; i++) sos += v[i] * v[i];

end

endmodule

� Show inferred hardware. �Don’t forget acme ip sqrt.

�Clearly show input and output ports of vmag.

Solution appears below.

+
0
sos

v[0]
32
*

+
sos

v[1]
32
*

+
sos

v[2]
32
*

acme_ip_sqrt

s1

m
a
g

vmag

sos

v

i=0 i=1 i=2

4

Problem 3, continued:

(b) Show the hardware that will be inferred for the module below, before and after optimization. Note: In
the original exam the input was named vi.

module min_elt(output logic [1:0] idx_min, input uwire signed [31:0] v [3]);

always_comb begin

idx_min = 0;

for (int i=1; i<3; i++) if (v[i] < v[idx_min]) idx_min = i;

end

endmodule

� Show inferred hardware. �Clearly show input and output ports.

Solution appears below in a plain form, followed by a version in which the hardware corresponding to the different parts of the if
statement is highlighted. Grading Note: A common difficulty was coming up with the hardware for v[idx min].

v[0]

v[1]

v[2]

<

0
1

idx_min

<
2

idx_mini=1 i=2

id
x
_
m
in

min_elt

v

32

32

32

v[0]

v[1]

v[2]

<

0
1

idx_min

<
2

idx_mini=1 i=2

id
x
_
m
in

min_elt

v

32

32

32

if (v[i] < v[idx_min]) idx_min = i;

5

� Show hardware after some optimization.

Solution appears below. The 3-input mux at i=1 has been eliminated because it always selected element 0. The 3-input mux at i=2
was replaced by a 2-input mux because the select input would never be 2. The 2-input mux at i=1 was eliminated since the select
signal has the same value as the output. The 2-input mux at i=2 was replaced by uwire and a single AND gate (with a bubbled
input).

v[0]

v[1]

v[2]

< <

idx_min
i=1 i=2

id
x
_
m
in

min_elt

v

32

32

32

6

Problem 4: [10 pts] Appearing in this problem are several variations on a counter.

(a) Show the hardware inferred for each counter below.

module ctr_a(output uwire [9:0] count, input clk);

logic [9:0] last_count;

assign count = last_count + 1;

always_ff @(posedge clk) last_count <= count;

endmodule

module ctr_b(output logic [9:0] count, input clk);

uwire [9:0] next_count = count + 1;

always_ff @(posedge clk) count <= next_count;

endmodule

� Inferred hardware for � ctr a and � ctr b.

last_count

count

1
+

clk

ctr_b

count

1

clk

ne t

(b) There is a big difference in the timing of the outputs of ctr_a and ctr_b. Explain the difference and
illustrate with a timing diagram.

�Difference between two modules. �Timing Diagram.

In ctr a the module output, count, is connected to the output of an adder. That means the value at the output will not be stable
until later in the clock cycle. See the left-side timing diagram below. External hardware could not do anything with the value other
than clocking it into a register for use in the next clock cycle. In contrast, the ctr b module output, count, is connected to a
register output, and so it is available for use at the beginning of the clock cycle.

clk

t 0 1 2

31 4

count

2last_count

clk

t 0 1 2

2

count

3 4next_count

ctr_b

7

Problem 5: [10 pts] Appearing below is the solution to the 2015 midterm exam Problem 2. Estimate the
cost of this module as illustrated but use variable s for the number of bits in sum (shown as sswid) and in
each a element (shown as parameter f). Assume that the cost of a BFA is 10 units and that the cost of a
n-input AND and OR gate is n− 1 units. Take into account the 0 input to one of the multiplexors.

module ssum #(int n = 3, int f = 4, int swid = f + $clog2(n))

(output logic [swid-1:0] sum,

input uwire [n-1:0] mask, input uwire [f-1:0] a[n]);

always @* begin

sum = 0;

for (int i=0; i<n; i++) if (mask[i]) sum += a[i];

end

endmodule

a[0] a[1]

1:0mask[1:0]

a[2]

2:2mask[2]

+

mask

a

0 sum

ssum n=3, f=4, sswid = 6

i=0 and 1 i=2

+

�Cost of illustrated hardware. �Account for 0 mux input.

There are two adders, each uses s bits. Since the cost of a BFA is 10 units, the cost of the two adders is 2× 10s = 20s units.

A two-input mux uses three 2-input gates per bit, so the total cost of the second mux is 3s units. In general, an n-input, width w mux
uses nw 2-input AND gates for selection, n ⌈lg n⌉-input AND gates for decoding, and w n-input OR gates. Without optimization,
the 4-input mux would cost 4s+ 4+ 3s = 7s+ 4 units. The total cost without optimization is 20s+ 7s+ 4+ 3s = 30s+ 4
units.

Because one of the inputs to the 4-input mux is zero all of the logic connecting to that input can be eliminated, and the OR gates
can be reduced from 4 to 3 inputs. So the optimized cost of the 4-input mux is 3s+ 3 + 2s = 5s+ 3 units. The total cost with

optimization is 20s+ 5s+ 3 + 3s = 28s+ 3 units .

Grading Note: Way too many students did not multiply the cost of a BFA by the number of bits in the
quantities being added.

8

Problem 6: [20 pts] Answer each question below.

(a) Show the values of the variables as indicated below:

Solution appears below. Notice that the difference between x1 and x2 is with the bit numbering. In the e[0]+’hf assignment
the ’hf (15 represented as a hexadecimal digit) is being added to the least-significant 4-bits of e. The result of that addition is
416 + f16 = 1316, and it is placed in the 4 least significant bits of e without modifying the other bits of e. The assignment to
e[0][0] is similar, except that it operates only on the least-significant bit of e.

module tryout();

logic [15:0] a;

logic [0:15] b;

logic [3:0][3:0] e;

logic [3:0] x1, x2;

initial begin

a = 16’h1234;

x1 = a[3:0]; // � Value of x1 is: 4

b = 16’h1234;

x2 = b[0:3]; // � Value of x2 is: 1

e = 16’h1234;

e[0] = e[0] + ’hf; // � Value of e is: 16’h1233

e = 16’h1234;

e[0][0] = e[0][0] + ’hf; // � Value of e is: 16’h1235

end

endmodule

(b) Describe something that can be done during elaboration that cannot be done during simulation, and
something that can be done during simulation, that cannot be done during elaboration.

� Something that can be done during elaboration but not during simulation is:

During elaboration one can use a generate loop to instantiate modules.

� Something that can be done during simulation but not during elaboration is:

During simulation one can compute values that depend on module inputs.

9

(c) Appearing below are two alternatives for an integer division module, Plan A and Plan B. Both are
impractical, but Plan A is not even synthesizable.

module div_plan_a #(int w = 16) (output logic [w-1:0] quo, input uwire [w-1:0] a, b);

always_comb begin

for (quo = 0; a > quo * b; quo++);

end

endmodule

module div_plan_b #(int w = 16) (output logic [w-1:0] quo, input uwire [w-1:0] a, b);

localparam int LIMIT = 1 << w;

always_comb begin

quo = 0;

for (int i=0; i<LIMIT; i++) if (a < i * b) quo++;

end

endmodule

�Why isn’t Plan A synthesizable? Be specific as possible.

It is not synthesizable because the number of iterations in the loop can not be determined at elaboration time.

�What might be a practical objection to the Plan B approach?

Because 2w multipliers and multiplexors are used the cost is ridiculously high for even moderate values of w. For example, for the
default value of 16, there would be 65536 multipliers and muxen. Even if the synthesis program simplified this to 65536 adders, the
cost would still be enormous.

(d) The magfp module below is not synthesizable due to the use of the real data type. How would the
module need to be changed so that it would be synthesizable and would operate on floating-point values.

module magfp(output real mag, input real vi [3]);

real sos;

sqrt #(32) s1(mag,sos);

always_comb begin

sos = 0;

for (int i=0; i<3; i++) sos += vi[i] * vi[i];

end

endmodule

� Show changes to port declaration for synthesizability.

Change real to [63:0].

�Explain with a few examples how the rest of the code would need to be changed.

The arithmetic operations would have to be replaced by bit-level operations to perform the floating-point arithmetic. This might be
done by instantiating FP multipliers and adders from an IP library (such as ChipWare) or by writing the Verilog to implement FP
arithmetic yourself.

10

