
LSU EE 4755 Homework 4 Solution Due: 12 October 2016

Problem 0: First, follow the instructions for account setup and homework workflow on the course
procedures page, https://www.ece.lsu.edu/koppel/v/proc.html.

Look through the code in hw04.v. Module lookup_behav in file hw04.v has a w-bit input char
and an n-element array of w-bit quantities named chars. (Parameter nelts is n and parameter
charsz is w.) The module also has a 1-bit output found which is logic 1 iff any element of chars
is equal to char. Finally, the module has a ⌈lgn⌉-bit output index which is set to the element
number of chars that matches char, or 0 if found is 0. Assume that no two elements of chars are
identical.

For example, suppose input char is set to 102 and that chars is {63,124,102,92}. Then
output found will be 1 and index will be 2. If char were 7 index would be 0 and found would
be 0, if char were 63 index would be 0 and found would be 1, etc. The alert student will have
recognized that n = 4 and that w ≥ 7 in these examples.

Module lookup is coded in synthesizable behavioral form that describes combinational logic.
The hw04.v file contains two other modules which are to do the same thing, lookup_linear and
lookup_tree, but those modules are not yet finished.

The testbench tests all of these modules. It tests them for sizes (n) of 4, 5, 10, 15, 16, 30, 40,
and 64. To change which sizes are tested (or the order in which they are tested) edit the testbench
module.

To have the testbench test only some of these modules (say, skip the lookup_tree tests until
after lookup_linear is working) look for the for loop with mut=0 and modify it appropriately. (It
should be easy to figure out the numbers.)

A synthesis script is provided that will synthesize all three modules at different sizes and both
with and very lax timing constraint and a very strict timing constraint. The script can be run using
the command rc -files syn.tcl. Initially it will stop with an error. To see it run to completion
before starting the assignment have it only synthesize lookup_behav (see below). Pre-set synthesis
options (in file .synth_init) were chosen to reject any design that is not combinational.

If there is an error when using the synthesis script then follow the manual synthesis steps on
the procedures page and look for error messages.

To change which modules are synthesized edit the set modules line (near the bottom) in file
syn.tcl. The values for nelts and other items can also be changed by editing the file.

Note: There are no points for this problem.

Problem 1: Complete lookup_linear so that it does the same thing as lookup_behavioral but
by using as many copies of lookup_elt as it needs. That is, lookup_linear should use generate
statements to instantiate lookup_elt and it should include whatever other code is needed to use
these instances to compute the correct outputs.

• Behavioral or structural code can be used.

• The module must be synthesizable.

• Assume that all elements of chars are different.

(The complete solution Verilog code is in the assignment directory and at

https://www.ece.lsu.edu/koppel/v/2016/hw04-sol.v.html.) There are two approaches to solving this
problem. In the easy approach, which is sufficient to get full credit, generate statements are used to instantiate the
lookup elt modules but behavioral code is used to compute index.

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2016/hw04-sol.v.html

In the alternative solution (lookup linear alt), generate statements are used both to instantiate the modules
and compute index. To compute index an array of wires, [idx sz-1:0]idx i[nelts-1:-1] is declared. Element
idx i[i] is the value of index taking into account elements 0 to i.

module lookup_linear

#(int charsz = 8,

int nelts = 15, // Pronounced en-elts.

int idx_sz = $clog2(nelts))

(output logic found,

output logic [idx_sz-1:0] index,

input uwire [charsz-1:0] char,

input uwire [charsz-1:0] chars[nelts-1:0]);

/// SOLUTION – Easy

//

// Instantiate nelts modules, but use use behavioral code to examine

// their found (match) outputs.

// Declare wires to connect to the found outputs of the instantiated modules.

//

uwire [nelts-1:0] match;

for (genvar i=0; i<nelts; i++)

lookup_elt #(charsz) le(match[i],char,chars[i]);

always_comb begin

found = 0;

index = 0;

for (int i=0; i<nelts; i++)

if (match[i]) begin index = i; found = 1; end

end

endmodule

2

module lookup_linear_alt

#(int charsz = 8,

int nelts = 15, // Pronounced en-elts.

int idx_sz = $clog2(nelts))

(output logic found,

output logic [idx_sz-1:0] index,

input uwire [charsz-1:0] char,

input uwire [charsz-1:0] chars[nelts-1:0]);

/// SOLUTION – Alternative

//

// Use generate statements to instantiate the modules and to

// generate logic to find the index.

// Instantiate nelts lookup_elt modules and compute found.

//

uwire [nelts-1:0] match;

for (genvar i=0; i<nelts; i++)

lookup_elt #(charsz) le(match[i],char,chars[i]);

assign found = | match;

// Instantiate logic to find the index of the last matching character.

//

uwire [idx_sz-1:0] idx_i[nelts-1:-1];

assign idx_i[-1] = 0;

for (genvar i=0; i<nelts; i++)

// If no match pass along previous idx_i, otherwise replace it with i.

assign idx_i[i] = match[i] ? i : idx_i[i-1];

assign index = idx_i[nelts-1];

endmodule

Problem 2: Complete module lookup_tree so that it performs the lookup using recursive instan-
tiations of itself. Take care so that index is computed efficiently. Hint: think about how to compute
index efficiently when n (nelts) is a power of 2, then get the same efficiency for any n.

If completed correctly, the cost and especially the performance at larger sizes should be
better than lookup_behavioral and (unless you did an unexpectedly good job) better than
lookup_linear.

• Behavioral or structural code can be used.

• The module must be synthesizable.

• Assume that all elements of chars are different.

3

(The complete solution Verilog code is in the assignment directory and at

https://www.ece.lsu.edu/koppel/v/2016/hw04-sol.v.html.) First, we need to use generate state-
ments to split elaboration into two cases: n = 1, and n > 1. For n = 1 index will always be zero (there’s only one
element in the array and its index is zero), and found can directly be assigned the expression char == chars[0] .

Two solutions will be described. In lookup tree simple work is split evenly between the two instantiated
modules but this results in a more costly computation of index than is necessary. In lookup tree, the size (value of
nelts) of one instantiated module is forced to be a power of 2, reducing cost.

For n > 1 we need to split the input array, chars, between two instantiated lookup tree modules and combine
their found and index outputs. In lookup tree simple the array is split in half, the approach used in the pop n

module presented in class. Objects lo sz and hi sz are the sizes of the instantiated modules, note that these are used
to compute the number of bits in the index outputs.

Logic is also needed to take the found and index outputs of the two instantiated modules, named lo f, hi f,
lo idx, and hi idx, and compute the found and index outputs of the module. A mistake that many students make
when trying to solve this problem is to try to take into account what is happening in all instantiated modules at every
level when designing this logic. Instead, just assume that lo f, hi f, lo idx, and hi idx are correct, and use them
to compute found and index. If such logic can be found, then the module will work at any size.

The output found is simply the OR of lo f and hi f. If lo f is 1, then index is lo idx, but if hi f is
1 then index is lo sz + hi idx. We don’t need to worry about both lo f and hi f being one (the problem
statement said it couldn’t happen). If hi f and lo f are both 0 then lo idx and hi idx will both be 0 and index
should be set to zero. Therefore, index can be set to hi f ? lo sz + hi idx : lo idx. That’s it for the
simple solution.

The problem though was to find a solution that computed index efficiently. Consider the sum lo sz + hi idx.
If lo sz were chosen to be a power of 2, and lo sz >= hi sz then instead of adding we would just be putting a 1 in
bit position lo bits: {1’b1,hi idx}. We can re-write this as {hi f,hi idx} since this is the case where hi f

is 1. And since hi f is 1 we know lo idx is all zeros, so we can use the expression { hi f, lo idx | hi idx

}. As the alert student may have realized, that expression also is correct for the case where lo f is 1 and the case where
both are 0. The OR gates are much less expensive than an adder and a multiplexor, even an adder with a constant input.

The code for the two modules appears below, along with the inferred hardware for the second module (that computes
index efficiently.)

module lookup_tree_simple

#(int charsz = 8,

int nelts = 15,

int idx_sz = $clog2(nelts))

(output uwire found,

output uwire [idx_sz-1:0] index,

input uwire [charsz-1:0] char,

input uwire [charsz-1:0] chars[nelts]);

/// SOLUTION – Unoptimized

if (nelts == 1) begin

assign found = char == chars[0];

assign index = 0;

end else begin

// Split the character array between recursive instantiations.

//

4

https://www.ece.lsu.edu/koppel/v/2016/hw04-sol.v.html

localparam int lo_sz = nelts / 2;

localparam int lo_bits = $clog2(lo_sz);

localparam int hi_sz = nelts - lo_sz;

localparam int hi_bits = $clog2(hi_sz);

//

// Note that we need to compute lo_bits and hi_bits correctly so

// that we can declare index connections, lo_idx and hi_idx, of

// the correct size.

uwire lo_f, hi_f;

uwire [lo_bits-1:0] lo_idx;

uwire [hi_bits-1:0] hi_idx;

lookup_tree #(charsz,lo_sz) lo(lo_f, lo_idx, char, chars[0:lo_sz-1]);

lookup_tree #(charsz,hi_sz) hi(hi_f, hi_idx, char, chars[lo_sz:nelts-1]);

assign found = lo_f || hi_f;

assign index = hi_f ? lo_sz + hi_idx : lo_idx;

end

endmodule

5

found

index

char

chars

lookup_tree
nelts = lo_sz

lo

hi

found

index

char

chars

lookup_tree
nelts = hi_sz

0:0

1:1

0:0

1:1

msb

lsb

found

index

0:lo_sz-1

lo_sz:nelts-1

char

chars

lookup_tree nelts=

lo_f

h
i_
f

lo_idx

hi_idx

module lookup_tree

#(int charsz = 8, int nelts = 15, int idx_sz = $clog2(nelts))

(output uwire found, output uwire [idx_sz-1:0] index,

input uwire [charsz-1:0] char, input uwire [charsz-1:0] chars[nelts]);

/// SOLUTION – Preferred

if (nelts == 1) begin

assign found = char == chars[0];

assign index = 0; // Actually, we are assigning a zero-bit vector.

end else begin

// Make the size of the first lookup_tree (lo) a power of two.

localparam int lo_bits = idx_sz - 1;

localparam int lo_sz = 1 << lo_bits;

// Compute the size of the second lookup_tree (hi).

localparam int hi_sz = nelts - lo_sz;

localparam int hi_bits = $clog2(hi_sz);

uwire lo_f, hi_f;

uwire [lo_bits-1:0] lo_idx;

uwire [hi_bits-1:0] hi_idx;

lookup_tree #(charsz,lo_sz) lo(lo_f, lo_idx, char, chars[0:lo_sz-1]);

lookup_tree #(charsz,hi_sz) hi(hi_f, hi_idx, char, chars[lo_sz:nelts-1]);

assign found = lo_f || hi_f;

if (lo_bits == 0) assign index = hi_f;

else assign index = { hi_f, hi_idx | lo_idx };

end

endmodule

6

Problem 3: Run the synthesis script and characterize the strengths and weaknesses of each mod-
ule. (For example, module X has lowest cost for low-speed designs.)

In a follow-on homework assignment additional questions will be asked about these modules.
The cost of the tree solution is almost always lower than the other designs, the performance is usually but not always

better. For the low-cost (large delay) configurations behavioral design is usually most expensive, but is less expensive
than the linear designs for the high-performance designs.

Note: linear_tree below is linear_tree_simple above,

and linear_tree_opt below is linear_tree above.

Module Name Area Delay Delay

Actual Target

lookup_behav_charsz8_nelts4 9152 927 10000

lookup_linear_charsz8_nelts4 9012 990 10000

lookup_tree_charsz8_nelts4 8916 1026 10000

lookup_tree_opt_charsz8_nelts4 8988 952 10000

lookup_behav_charsz8_nelts15 35444 2348 10000

lookup_linear_charsz8_nelts15 34996 2338 10000

lookup_tree_charsz8_nelts15 34280 2606 10000

lookup_tree_opt_charsz8_nelts15 33532 2238 10000

lookup_behav_charsz8_nelts32 74648 3691 10000

lookup_linear_charsz8_nelts32 74212 3257 10000

lookup_tree_charsz8_nelts32 70932 2480 10000

lookup_tree_opt_charsz8_nelts32 71084 2443 10000

lookup_behav_charsz8_nelts40 94028 3862 10000

lookup_linear_charsz8_nelts40 94288 2585 10000

lookup_tree_charsz8_nelts40 95996 3501 10000

lookup_tree_opt_charsz8_nelts40 89292 2778 10000

lookup_behav_charsz8_nelts60 143268 5913 10000

lookup_linear_charsz8_nelts60 141792 5638 10000

lookup_tree_charsz8_nelts60 142828 3963 10000

lookup_tree_opt_charsz8_nelts60 138288 3501 10000

lookup_behav_charsz8_nelts4 12304 621 100

lookup_linear_charsz8_nelts4 13344 594 100

lookup_tree_charsz8_nelts4 13280 598 100

lookup_tree_opt_charsz8_nelts4 10888 640 100

lookup_behav_charsz8_nelts15 46896 1136 100

lookup_linear_charsz8_nelts15 47528 1120 100

lookup_tree_charsz8_nelts15 45268 1151 100

lookup_tree_opt_charsz8_nelts15 41696 1003 100

lookup_behav_charsz8_nelts32 105032 1247 100

lookup_linear_charsz8_nelts32 108688 1288 100

lookup_tree_charsz8_nelts32 96980 1093 100

lookup_tree_opt_charsz8_nelts32 96408 1056 100

lookup_behav_charsz8_nelts40 120132 1523 100

lookup_linear_charsz8_nelts40 131344 1114 100

lookup_tree_charsz8_nelts40 134444 1260 100

lookup_tree_opt_charsz8_nelts40 116320 1144 100

lookup_behav_charsz8_nelts60 184892 1726 100

lookup_linear_charsz8_nelts60 210512 1461 100

7

lookup_tree_charsz8_nelts60 185628 1890 100

lookup_tree_opt_charsz8_nelts60 176544 1500 100

8

