
LSU EE 4755 Homework 3 Solution Due: 28 September 2016

Problem 1: Module aa_digit_val, below, is the solution to Homework 2 Problem 1. It has an
8-bit input char and two outputs. Output is_dig is 1 iff char (an ASCII character) is considered
a radix-R digit, where 2 ≤ R ≤ 16, is the value of parameter radix. Output val is the value of
that digit (in binary), or zero if it’s not a digit.

module aa_digit_val

#(int radix = 10)

(output uwire [3:0] val, output uwire is_dig, input uwire [7:0] char);

uwire is_dig_09 = char >= "0" && char <= "9";

uwire is_dig_af = char >= "a" && char <= "f";

uwire [3:0] val_raw = is_dig_09 ? char - "0" : char - "a" + 10;

assign is_dig = (is_dig_09 || is_dig_af) && val_raw < radix;

assign val = is_dig ? val_raw : 0;

endmodule

Provide sketches of what you expect the inferred hardware to look like for aa_digit_val as
described below. Hint: Some problems in the EE 4755 2014 Final Exam dealt with numbers in

ASCII representation. The optimizations requested below must go beyond those found in the exam

solution.

(a) Show a sketch of the inferred hardware before any optimization is done.

Solution appears below. Items in italic are constants.

>=

<=

<
+

-

"0"

"9"

>=

<=

"a"

"f"

-"0"

"a"

8'd10

radix

4'd0 val

is_dig

char

is
_
d
ig
_
0
9

is_dig_af

val_raw

aa_digit_val radix

1

https://www.ece.lsu.edu/koppel/v/

(b) Show a sketch of the inferred hardware after some optimization has been performed.

• The sketches must show the product of human thought (in particular, the human who’s name
is on the submission), not a synthesis program.

• When considering the optimizations for the logic generating is dig (including the logic for
is dig 09 and is dig af) recall that in general the cost of logic computing a==b is less than
the cost of logic computing a>b.

• When considering the optimizations for the logic generating val think about the subtraction
operations and what they actually do when is dig is true. If necessary, work out examples
of the subtraction by hand in hexadecimal.

Solution appears below. The optimization to avoid some magnitude comparison when computing is dig 09 is
based on the fact that the ASCII values of characters “0” to “9” are 0x30 to 0x39 and so one can check whether the
most-significant four bits are equal to 0x3 and only do a single magnitude comparison on the lower four bits. Similarly,
the optimization of is dig af is based on the fact that the ASCII values of “a” to “f” are 0x61 to 0x67, and so one
can check whether the five most significant bits are 011002 and whether the low three bits are neither 0002 nor 1112.

The logic computing the value of “0” to “9” just takes the low four bits of char, no arithmetic is performed. The
logic computing the value of “a” to “f” adds 1 to the low three bits of char and puts a 1 in the MSB position to make a
four-bit quantity.

<+

radix

4'd0 val

is_dig

char

is_dig_09

is
_
d
ig
_
a
f

val_raw

aa_digit_val radix

=
7:3

5'hc

=

=3'h7

3'h0

2:0

2:0

=4'h3

7:4

3:0

4'd10 <

2:0

3'd1

1'd1

msb

lsb

3:0

3

4

There is another problem on the next page!

2

Problem 2: Module aa_full_adder from Homework 2, Problem 2 adds together two digits of a
radix-R number represented in ASCII plus a carry in. The module description from the solution
appears below.

module aa_full_adder

#(int radix = 10)

(output uwire [7:0] sum, output uwire carry_out, output uwire is_dig_out,

input uwire [7:0] a, b, input uwire carry_in, input uwire is_dig_in);

uwire [3:0] val_a, val_b;

uwire is_dig_a, is_dig_b;

aa_digit_val #(radix) dva(val_a, is_dig_a, a);

aa_digit_val #(radix) dvb(val_b, is_dig_b, b);

assign is_dig_out = is_dig_in && (carry_in || is_dig_a || is_dig_b);

uwire [4:0] sum_val = carry_in + val_a + val_b;

assign carry_out = sum_val >= radix;

uwire [3:0] sum_dig_val = carry_out ? sum_val - radix : sum_val;

assign sum = !is_dig_out ? " " :

sum_dig_val < 10 ? "0" + sum_dig_val : "a" + sum_dig_val - 10;

endmodule

An obvious objection to an ASCII-coded radix-R adder is that it uses 8 bits to represent a
digit that can be represented using only ⌈lgR⌉ bits.

3

(a) Show the hardware that might be synthesized for the module aa_full_adder based on the
description above. This should be the inferred hardware with some optimizations applied. Take
care to show the number of bits at the inputs and output of units like adders and comparison logic.

Solution appears below. Several optimizations were applied. The logic computing sum val >= radix was
eliminated, instead the logic computing sum val - radix was widened to five bits, if the difference is positive then
sum val >= radix is true. If the radix is a power of two this logic would not be needed at all, an overflow can be
detected by examining one bit position and sum val - radix would simply be the least significant lgR bits, where
R is the radix.

To save multiplexor cost, the 4 LSB of sum were computed separately from the 4 MSB. Note that the four possible
values for the 4 MSB, 0x2 (for a space), 0x3 (for digits 0-9), and 0x6 (for digits a-f), can be easily be constructed from
is dig out and sum dig val<10.

Note that only one adder is needed to compute the sum of the two digit values and the carry in, that’s because the
module’s carry in value can go in to the adder’s carry in input. It would be very wasteful to show a second adder just to
add the carry in.

<

-radix

aa��������a� radix

c�a�
�a�

�i����a

b

+
	
�

aa��������a� radix

c�a�
�a�

�i����

d�

d��

carry_in

is_dig_in

+4

5

5

3:0

4:4

is_dig_out

+
3'd7

4'd10

4'd0

lsb

msb

1'b0

1'b1
sum

aa_full_adder radix

4

carry_out

3:0

Combine x-radix

with x>=radix.

Reduce mux cost

by keeping 4 msb

separate.

8

(b) Compare the cost of a d-digit ASCII-coded radix-16 adder to a 4d-bit ripple adder. (Note that
both adders can add numbers in the range of 0 to 24d − 1.) Do so by estimating the cost in terms
of the number of gates, and state any assumptions, such as the number of gates needed for an x-bit
comparison unit.

The following cost model will be used. All x-input AND and OR gates have a cost of x − 1. Inverted inputs and
outputs (those little circles) are free! Inverters are also free. A 2-input XOR cost 3 units and a 3-input XOR cost 5 units.

Based on those costs, a binary full adder cost 10 units and a n-bit ripple adder cost 10n units. A comparison unit
can be made from a ripple adder by eliminating the sum bits, and would cost 5n units. An equality unit made from an
XOR and an AND costs 4n for n bits. (The difference in cost between equality and magnitude is larger for lower-delay
designs.) A w-bit, 2-input multiplexor cost 3w units.

In many of the adder, equality, and comparison units one of the inputs is constant. That has a big impact on cost.
The cost of an n-bit ripple adder drops to 4n units (the BFA has a 2-input XOR and a 2-input AND gate to propagate
the carry). With one input constant n-bit magnitude comparison and equality drop in cost to just n units.

When radix is 16, the aa digit val module will be simplified further. The val raw<radix comparison
is no longer necessary. Based on that the cost is (+ 4 4 1 3 5 1 1 0 16 12 0 4); = 51 units. The
aa full adder module instantiates two of these and has plenty of logic of its own. The cost including the instantiated
modules is (+ 51 51 2 1 40 4 12 12 4 1 4); = 182 units. (Figuring out the LISP syntax and attaching the
costs to parts is left as an exercise to the reader.)

4

Based on this, the cost of a d-digit ASCII adder is 182d units. The equivalent ripple adder costs just 40d units.
Sure, we expected the ASCII adder to cost more, but over 4× more? Notice that a big part of the ASCII adder’s cost are
the two aa digit val modules, 112d units.

5

