
LSU EE 4755 Homework 1 Solution Due: 9 September 2016

The questions below can be answered without using EDA software, paper and pencil will suf-
fice. Please turn in the solution on paper. Homework 2 will require the use of Verilog im-
plementations. Nevertheless, runnable SystemVerilog code for this assignment can be found at
https://www.ece.lsu.edu/koppel/v/2016/hw01.v (plain Verilog) and
https://www.ece.lsu.edu/koppel/v/2016/hw01.v.html (syntax-highlighted HTML).

Those who are rusty about the correspondence between Verilog code and hardware might want
to look at the solution to EE 3755 Fall 2013 Homework 1, at
http://www.ece.lsu.edu/ee3755/2013f/hw01_sol.pdf.

Problem 1: Show a Verilog explicit structural description of the module illustrated below. In this
assignment it is okay to use primitives (and, not,. . .), but don’t get in the habit of using them.

a
[0
]

a
[1
]

a
[2
]

a
[3
]

x

y

a

ezmod

one

two

three

four

�ve

a
lp
h
a

b
e
ta

g
a
m
m
a

• Base the names of ports, wires, and instances on labels in the illustration.

• Of course, use only primitives and wires. See Table 28-1 of IEEE Std 1800-2012 for a list of
gates.

Solution appears below. In order to be explicitly structural NOT gates were instantiated to provide the inverted
inputs for the AND gates. In real life, there would be no disadvantage using !a[2] in place of na2. (That may not be
100% true, because working for a company with super-strict HDL style rules is a real-life situation.)

module ezmod(output uwire x, y, input uwire [3:0] a); // SOLUTION

uwire na0, na1, na2, na3;

not n0(na0,a[0]);

not n1(na1,a[1]);

not n2(na2,a[2]);

not n3(na3,a[3]);

uwire alpha, beta, gamma;

and one(alpha, na3, a[2], na1, a[0]);

and two(beta, a[3], a[2], na1, na0);

and three(gamma, na3, na2, na1, na0);

or four(x, alpha, beta);

xor five(y, beta, gamma);

endmodule

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/2016/hw01.v
https://www.ece.lsu.edu/koppel/v/2016/hw01.v.html
http://www.ece.lsu.edu/ee3755/2013f/hw01_sol.pdf

Problem 2: Answer the following questions about Verilog primitives as defined in IEEE Std 1800-
2012. (See Chapter 28.) Indicate the exact section number where the answer is found.

(a) The standard provides a not primitive and a nor primitive, among others. One can easily argue
that a 1-input nor gate is the same as a not gate. Does the standard actually allow Verilog code
to instantiate a 1-input nor gate?

Yes, see Section 28.4.
Grading Note: It is not correct to answer “table 28-1 because it is shown as an n-input gate”, because the table

does not explicitly state that n == 1 is acceptable for a nor gate.

(b) Based on the standard, is there anything that can be done with a not primitive that can’t be
done with a 1-input nor primitive? (Don’t try to answer this too deeply, just show an instantiation.)

Yes, a not primitive can have more than one output. The outputs all have the same value under unstressed
circumstances. Multiple-output not gates will not be used for designs in this class.

2

Problem 3: Output match of module is_1133, shown below, is 1 iff its input d (digits) is 1133 in
BCD (which has the same representation as 1133 16). The module instantiates BCD digit detection
modules is_1 and is_3.

module is_1(output uwire match, input uwire [3:0] d);

uwire z321;

nor o0(z321,d[3],d[2],d[1]);

and a1(match,z321,d[0]);

endmodule

module is_3(output uwire match, input uwire [3:0] d);

uwire z32;

nor o0(z32,d[3],d[2]);

and a1(match,z32,d[1],d[0]);

endmodule

module is_1133(output uwire match, input uwire [15:0] d);

uwire m1, m2, m3, m4;

and a1(match, m1, m2, m3, m4);

is_1 i0(m1, d[15:12]);

is_1 i1(m2, d[11:8]);

is_3 i2(m3, d[7:4]);

is_3 i3(m4, d[3:0]);

endmodule

(a) Draw a diagram of is_1133
based on the explicit structural
description above. Show the in-
sides of the is_1 and is_3mod-
ules. Label the diagram using
the same wire and instance names
used in the Verilog descriptions.

Solution appears to the right.

d

o0
a1

m
a
tc
hz321

is_1

d[0]

d[1]

d[2]

d[3]

i0

i1

i2

i3

o0
a1

m
a
tc
hz321

is_1

d[0]

d[1]

d[2]

d[3]

m1

m2

m3

m4

m
a
tc
h

15:12

7:4

3:0

11:8

o0

a1

m
a
tc
h

z32

d[0]

d[1]

d[2]

d[3]
is_3

o0

a1

m
a
tc
h

z32

d[0]

d[1]

d[2]

d[3]
is_3

is_1133

a1

3

(a) Design a module is_1133_is that does the same thing as is_1133, but that uses implicit
structural code. The correct solution requires adding only one short line to the shell shown below.
Don’t forget that the value in d is in BCD. Note: The word short was added after the original
assignment.

Solution appears below. The comparison operator checks for the correct value. We need to compare d to the BCD
representation of 1133. Verilog does not have literal format just for BCD, as it does for binary, octal, decimal, and
hexadecimal. But it doesn’t need one because the BCD representation of 1133 is the same as the binary representation of
1133 16, which in Verilog is 16′h1133. That means that the is 1333 module (either version) has an output that’s
one iff the input is the BCD representation of 1333 or the unsigned binary representation of 4403 (because 4403 10 =
1133 16).

// SOLUTION

module is_1133_is(output uwire match, input uwire [15:0] d);

assign match = d == 16’h1133;

endmodule

4

Problem 4: When completed the output of module is_1235 is 1 iff the input is 1235 in BCD.

module is_1235(output uwire match, input uwire [15:0] d);

endmodule

(a) Complete the module. The module must be explicitly structural except for the use of the
concatenation operator (see Section 11.4.12). The module must use is_1 and is_3 to detect the
digits. Do not assume or design an is_2 or is_5 and don’t put in logic to detect those digits.

Solution appears below. The is 1 module is used to detect a 2 by swapping the two least-significant bits. (The
same method can be used to detect a 4 or an 8.) Similarly, the is 3 is used to detect a 5 by swapping the two middle
digits. (The same method can be used to detect a 6 or a 9.)

// SOLUTION

module is_1235(output uwire match, input uwire [15:0] d);

uwire m1, m2, m3, m4;

is_1 i0(m1, d[15:12]);

is_1 i1(m2, {d[11:10],d[8],d[9]}); // Actually detect 2.

is_3 i2(m3, d[7:4]);

is_3 i3(m4, {d[3],d[1],d[2],d[0]}); // Actually detect 5.

and a1(match, m1, m2, m3, m4);

endmodule

(b) Draw a diagram of the com-
pleted module, which should
be very similar to the diagram
from the previous problem.

Solution appears to the right.

d

o0
a1

m
a
tc
hz321

is_1

d[0]

d[1]

d[2]

d[3]

i0

i1

i2

i3

o0
a1

m
a
tc
hz321

is_1

d[0]

d[1]

d[2]

d[3]

m1

m2

m3

m4

m
a
tc
h

15:12

11:10

o0

a1

m
a
tc
h

z32

d[0]

d[1]

d[2]

d[3]
is_3

o0

a1

m
a
tc
h

z32

d[0]

d[1]

d[2]

d[3]
is_3

is_1235

8:8

9:9

7:4

3:3

1:1

2:2

0:0

a1

5

