
Name Solution

Digital Design using HDLs

LSU EE 4755

Final Examination

Saturday, 12 December 2015 12:30-14:30 CST

Alias Not Synthesizable

Problem 1 (15 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (15 pts)

Problem 5 (10 pts)

Problem 6 (20 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/v/

Problem 1: [15 pts] Write a Verilog description of the hardware illustrated below.

+
*

en

en

b1

b2

b3

b0

c

a x

s

+

16

8

8

thing

clk

SOLUTION ON NEXT PAGE

2

�Verilog description of hardware including � port declarations and � port and other sizes.

+
*

en

en

b1

b2

b3

b0

c

a x

s

+

16

8

8

thing

clk

b
ab ab_1

c_1

ab_20

ab_21

The solution appears below. Names for wires that were unlabeled in the problem appear in purple. (That is, the purple labels are
part of the solution.) Note the use of case/endcase for the mux. Though using an if/else chain or the conditional operator,
?:, would be correct, they are more tedious and prone to error and so it’s worth taking the trouble to remember to use case.

module thing(output uwire [15:0] x, input uwire c, input uwire [1:0] s,

input uwire [7:0] b0, b1, b2, b3, a, input wuire clk);

logic [7:0] b, ab, ab_1, ab_20, ab_21;

logic c_1;

always_comb begin

case (s)

0: b = b0;

1: b = b1;

2: b = b2;

3: b = b3;

endcase

ab = a + b;

end

always_ff @(posedge clk) begin

c_1 <= c; // Note: Delayed assignment, so if(c_1) uses prior value.

ab_1 <= ab; // Delayed assignment here too.

if (c_1) ab_21 <= ab_1; else ab_20 <= ab_1;

end

assign x = a * (ab_20 + ab_21);

endmodule

3

Problem 2: [20 pts] The module below implements a simple memory module.

module smemory #(int size_lg = 4, int dbits = 8, int size = 1 << size_lg)

(output uwire [dbits-1:0] rd_data,

input uwire [size_lg-1:0] wr_idx, input uwire [dbits-1:0] wr_data, input uwire write,

input uwire [size_lg-1:0] rd_idx, input uwire clk);

logic [dbits-1:0] storage [size-1:0];

always_ff @(posedge clk) if (write) storage[wr_idx] = wr_data;

assign rd_data = storage[rd_idx];

endmodule

(a) Show the hardware that will be synthesized for this module when elaborated with size_lg = 2. Use
registers, multiplexors, decoders, and basic gates. Do not use a memory module.

� Show synthesized hardware, including hardware for � reading and �writing.

Solution appears below.

rd_idx

wr_idx

write

clk

rd_data

en

en

en

en

0:01:1

wr_data

smemory

4

Problem 2, continued: Appearing below is the module from the previous page.

module smemory #(int size_lg = 4, int dbits = 8, int size = 1 << size_lg)

(output uwire [dbits-1:0] rd_data,

input uwire [size_lg-1:0] wr_idx, input uwire [dbits-1:0] wr_data, input uwire write,

input uwire [size_lg-1:0] rd_idx, input uwire clk);

logic [dbits-1:0] storage [size-1:0];

always_ff @(posedge clk) if (write) storage[wr_idx] = wr_data;

assign rd_data = storage[rd_idx];

endmodule

(b) Assume that initially location 1 (storage[1]) holds a 10, location 2 holds a 20, location 3 holds a 30,
and so on. Complete the timing diagram below, consistent with this module.

clk

write

wr_idx

rd_idx

wr_data

rd_data

1 2 3

33

3

1

0 4

0 44

10 20 30 33

�Complete rd data row of timing diagram.

Solution appears above in blue.

5

clk

write

wr_idx

rd_idx

wr_data

rd_data

3

33

30

0

30 33

(c) Modify the module below (same as one on previous
page) so that its behavior is consistent with the timing
diagram to the right. That is, if the location being
written is the same as the one being read the rd_data
output shows the data on wr_data. If the locations
don’t match or nothing is being written the behavior
is unchanged.

�Modify the module.

Solution appears below. The original line is commented out for
reference. Otherwise, cluttering your code with commented out
lines is bad style. Instead, learn how to diff your working copy with
the latest committed version and be able to do so in < 500ms.

module smemory_bp #(int size_lg = 4, int dbits = 8, int size = 1 << size_lg)

(output uwire [dbits-1:0] rd_data,

input uwire [size_lg-1:0] wr_idx, input uwire [dbits-1:0] wr_data, input uwire write,

input uwire [size_lg-1:0] rd_idx, input uwire clk);

logic [dbits-1:0] storage [size-1:0];

always_ff @(posedge clk) if (write) storage[wr_idx] = wr_data;

// assign rd_data = storage[rd_idx];

// SOLUTION

assign rd_data = write && rd_idx == wr_idx ? wr_data : storage[rd_idx];

endmodule

6

Problem 3: [20 pts] The module below and the similar one on the next page are like the memory module
from the previous problem, except that their output is the sum of locations rd_start, rd_start+1, . . .,
rd_start+rd_len-1. Assume that rd_start+rd_len <= size.

module rsum_plan_a #(int sz_lg = 4, int ebits = 8, int size = 1 << sz_lg)

(output logic [ebits-1:0] sum,

input [sz_lg-1:0] wr_idx, input [ebits-1:0] wr_data, input write,

input [sz_lg-1:0] rd_start, input [sz_lg-1:0] rd_len, input clk);

logic [ebits-1:0] storage [size-1:0];

// Don’t show synthesized hardware for line below.

always_ff @(posedge clk) if (write) storage[wr_idx] = wr_data;

// Plan A -- Show Synthesized Hardware for this Verilog

always_comb begin

sum = 0;

for (int i=0; i<size; i++) if (i < rd_len) sum += storage[i + rd_start];

end

endmodule

(a) Show the hardware that will be synthesized for the always_comb block. Include basic optimizations, but
don’t optimize to the point where hardware is identical to Plan B (next page).

� Show not-too-optimized hardware for sum.

en

en

en

en

smemory

1
01

2

3

+

01

+

01

+

0
01

0

rd_start

rd_le�

sum

<

<

<

<

sum

sum

sum

sum

sum

sum

sum

i=1

i=0

i=2

i=3

s
to
ra
g
e
[0
]

s
to
ra
g
e
[1
]

s
to
ra
g
e
[2
]

s
to
ra
g
e
[3
]

7

(b) Appearing below is Plan B for the module. Though we know it produces the same value for sum as Plan
A, it might be synthesized into different hardware. Show the hardware synthesized for Plan B.

module rsum_plan_b #(int sz_lg = 4, int ebits = 8, int size = 1 << sz_lg)

(output logic [ebits-1:0] sum,

input [sz_lg-1:0] wr_idx, input [ebits-1:0] wr_data, input write,

input [sz_lg-1:0] rd_start, input [sz_lg-1:0] rd_len, input clk);

logic [ebits-1:0] storage [size-1:0];

// Don’t show synthesized hardware for line below.

always_ff @(posedge clk) if (write) storage[wr_idx] = wr_data;

// Plan B -- Show Synthesized Hardware for this Verilog

always_comb begin

sum = 0;

for (int i=0; i<size; i++)

if (i >= rd_start && i < rd_start + rd_len) sum += storage[i];

end

endmodule

� Show the hardware that will be synthesized for Plan B. en

en

en

en

smemory

01

0 01

+

0

rd_start

rd_len

sum

<

sum

sum

sum

sum

i=1

i=0

i=2

s
to
ra
g
e
[0
]

s
to
ra
g
e
[1
]

s
to
ra
g
e
[2
]

s
to
ra
g
e
[3
]

+

0
>=

1
<

1
>=

01

+

sum
2

<

2
>=

01

+

sum
3

<

3
>=

i=3

sum

sum

Solution appears to the right.

(c) Which one is better?

�Which is better, © Plan A or �© Plan B .

�Explain, with a rough estimate of cost and timing.

Short Answer: The cost of the multiplexors makes Plan A more
expensive than Plan B when ebits is greater than 1. The timing
is about the same.

Detailed answer: Plan A contains three more multiplexors than Plan B, the total number of additional multiplexor inputs is 3+2+1 =
6, and each of these is ebits wide, for a cost of 6× 3× e = 18e units, where e is ebits. The logic in Plan B that’s not in Plan
A includes four AND gates, a 2-bit adder and three fixed comparison units. Assume that the cost of a BFA is 10 units. Since the
inputs to the adder are 2-bit quantities and since a carry-out is needed, the cost is 20 units. (The adder output must be three bits to
do the comparison i<rd start+rd len.) Assume that the ≥ fixed comparison units cost 3 units each (draw a truth table). The
total cost of logic in Plan B not in plan A is then 4 + 20 + 3 × 3 = 33 units. So Plan B is less expensive whenever the storage
element size, ebits, is greater than 1 bit, which presumably is most of the time.

The path to the select signal for the i = 0 mux in Plan B passes through an adder (albeit a small one), a comparison, and an AND
gate. In contrast, signal arrive at the data inputs to the corresponding multiplexor at a delay of about 4 units. Therefore Plan B is
a little bit slower based on this simple analysis.

8

Problem 4: [15 pts] Appearing below are excerpts based on the cam_hash module used in class, showing
what we called the hash_early design. Recall that with the early hash design the hash function (in module
hash) is computed before the positive clock edge while the lookup occurs after the positive edge. We assumed
that the hash could be computed in about 1

2
of our target clock period.

module cam_hash_exceprt

(output [dwid:1] out_data, output out_valid, output ready,

input [kwid:1] in_key, input [dwid:1] in_data,

input Cam_Command in_cmd, input clk);

logic [kwid:1] b_key;

logic [dwid:1] b_data;

logic [hkey_size-1:0] b_hash;

Cam_Command b_cmd;

uwire [hkey_size-1:0] ohm_key_out;

always_ff @(posedge clk) begin

b_key <= in_key;

b_data <= in_data;

b_cmd <= in_cmd;

b_hash <= ohm_key_out;

end

hash #(kwid,num_sets_lg) our_hash_module(ohm_key_out, in_key);

/// Hardware to find matching key below ...

(a) The early hash design requires that the external hardware has the right timing behavior. Show a timing
diagram in which the timing behavior is correct for early hash, and one in which it is wrong. The “wrong”
behavior should result in incorrect results using the early hash design, but correct results without the early
hash design.

�Timing diagram showing � correct and �wrong behavior.

clk

t 0 1 2

in_key

o�������o��

b����

b��	
�

abc d��x��

11 22

x��

11 22

abc d��

33

123

hashed val of key

12322 7124227

ohm_key_out

not yet ready!

ohm_key_out

computed on time.

arrives on time arrives late

Solution appears to the right. In the early hash
design the value on port in key must arrive in
the first half of the clock cycle (before the negative
edge). That is what happens for input abc and so
hash which computes ohm key out has enough
time to finish. The correct hash, 22 is clocked
into register b hash. In contrast, key def arrives
late, and so when the next positive clock edge ar-
rive ohm key out has not stabilized and so some
arbitrary value is clocked into b hash. Notice
that b key gets the correct value in both cases,
because register gets its input directly from input
port in key.

9

Problem 4, continued:

(b) Register b_hash saves the hashed version of in_key, and b_key holds the unhashed version. Why do we
need the unhashed version?

� b_key is needed because ...

The number of bits in the hash of a key is less than the key itself, therefore two keys can have the same hash. The unhashed version
of the key is needed to check whether the key matches the key for item at the hashed location.

10

Problem 5: [10 pts] The Verilog below is part of a testbench (taken from icomp.v).

initial begin

/// Watchdog – Stop simulation if it’s taking too long.

//

fork begin

automatic int cyc_limit = in_str.len() * 100;

fork

wait (cycle_num == cyc_limit);

wait (tb_insert_done && tb_remove_done);

join_any

if (cycle_num >= cyc_limit) begin

$write("Exceeded cycle limit, exiting.\n");

$fatal(1);

end

end join_none

// Below: Send data to module under test.

(a) Generically explain what a fork and join pair do (ignoring the code above).

� fork and join ...

Each statement executes with its own thread of control, meaning that delays and other timing controls in one does not affect the
progress of the other. The statement after the join does not execute until all threads inside the fork/join finish.

(b) How would execution be effected if the last join_none were changed to join_any?

� Impact of changing join_none to join_any in code above.

Execution would never reach the //Below statement. With the join none, execution proceeds to the //Below statement
without delay. Code after the //Below statement tests modules and will set tb insert done and tb remove done when
tests are finished. But with join none changed to join any the //Below statement will not be executed until the first fork
finishes. That first fork finishes when either the cycle limit is exceeded or all modules have been tested, whichever comes first. But
with join none changed to join any module tests won’t have started and so the cycle limit will be exceeded. Note that if the
cycle limit is exceeded the code exits with a fatal error, and so the //Below statement will never be reached.

(c) How would execution be effected if the inner join_any were changed to a join_all?

� Impact of changing join_any to join_all in code above.

The testbench will always report that the cycle limit was exceeded, even if all tests were completed.

11

Problem 6: [20 pts] Answer each question below.

(a) Suppose we would like our hardware to operate at a 1GHz clock frequency. How do we tell the synthesis
program? (The exact syntax is not important.)

�Method to tell synthesis program the clock frequency.

Short Answer: define clk -name ee4755 -period 1000 myclkport.

Details: In Cadence Encounter use the command define clk -name NAME -period PERIOD PORTS. To set the clock
frequency to 1GHz set the period argument to 1000, which is the clock period in picoseconds: 1012 1

109
= 1000. Argument

PORTS is set to the name of the clock ports and NAME is a name by which this clock can be referred to in subsequent commands.

(b) The synthesis program will apply our target clock frequency to paths starting at launch points and
ending at capture points. We could explicitly specify such points but if we don’t it will use default launch
and capture points. What are they?

�By default timing is computed for paths that start at: register outputs.

� and end at: register inputs.

Notice that the default launch and capture points do not include module inputs and outputs. Those have to be added with
external delay commands.

(c) Suppose our target clock frequency is 1GHz. What is the harm in telling the synthesis program to
synthesize for 2GHz? For 0.5GHz?.

�Harm in specifying 2GHz when we just need 1GHz:

The resulting design will work correctly, but may be more expensive than had we specified 1GHz.

�Harm in specifying 0.5GHz when we just need 1GHz:

The synthesized hardware may not work at 1GHz.

12

(d) The code below will inconsistently assign a variable. Explain why and fix the problem.

module short_ans(output logic [7:0] x, y, input [7:0] a, b, c, input clk);

always @(posedge clk) begin

x = a + b;

end

always @(posedge clk) begin

y = x + c;

end

endmodule

�Reason for inconsistent behavior:

Because the value of x used in the second always block may be before the a+b assignment, or after.

�Fix problem.

One way is to put the two statements in the same block. That’s shown below. Another possibility is to use nonblocking assignment.

module short_ans(output logic [7:0] x, y, input [7:0] a, b, c, input clk);

always @(posedge clk) begin

x = a + b;

y = x + c;

end

endmodule

(e) Describe the problem with the module below. How might it affect simulation?

module short_ans2(output logic [7:0] x, input [7:0] a, b, input reset);

always_comb begin

if (reset) x = a; else x = x + b;

end

endmodule

�Problem with module.

� Impact on simulation.

Wire x is both an input and an output of the always comb. So each change in x would trigger another execution of the block. To
fix it a clock is needed to control when x is incremented.

13

