
Name Solution

Digital Design using HDLs

EE 4755

Midterm Examination

Monday, 10 November 2014 11:30–12:20 CST

Alias Over-reactive region

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (10 pts)

Problem 4 (15 pts)

Problem 5 (13 pts)

Problem 6 (22 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/v/

Problem 1: [20 pts] Write a Verilog description of the hardware shown below.

+

- <

>8'b0

en
1:1

0:0

sa

sb

val

op

hi

ok

lo

clk

�Write a Verilog module corresponding to the hardware above.

�Be sure to declare module ports and � any wires and vars (logic) used inside.

�Pay attention to the differences between lo and hi and � the differences between sa and sb.

// SOLUTION

module prob1(output logic [7:0] sa, sb, output ok,

input [1:0] op, input [7:0] val, hi, input clk);

always_comb

case (op)

0: sa = 0;

1: sa = sb + val;

2: sa = sb - val;

3: sa = sb;

endcase

always_ff @(posedge clk) sb <= sa;

logic [7:0] lo;

always_ff @(posedge clk) if (op == 0) lo <= val;

assign ok = sb > lo && sb < hi;

endmodule

The Verilog appears above.

2

Discussion of sa /sb differences.

In the diagram notice that sa is produced in part by signals connected to the module inputs. That means if, for example, input
op changes then sa must change as soon as it can. For that reason it is not assigned in an always block controlled by posedge
clk, instead it is assigned in an always block sensitive to all live-in objects, namely op, val, and sb. In contrast, output sb is
connected to the output of an edge-triggered register which means it can only change on the positive edge of clk. For that reason
it is assigned in an always block sensitive to posedge clk.

The lo register is written on the positive edge of the clock when bit 0 (notice the 0:0 label next to the tic mark) of op is zero and
when bit 1 of op is zero. In Verilog that’s cleanly shown as if (op == 0). It would be correct though cumbersome to replace
the if condition with op[0] == 0 && op[1] == 1. An even more cumbersome solution would instantiate an AND gate and
two NOT gates.

3

Problem 2: [20 pts] Appearing below is the multiply circuit from the solution to Homework 3, in Verilog
(slightly simplified) and as a diagram showing what hardware a synthesis program might infer.

module mult_seq_csa_m #(int wid = 16, int pp_per_cycle = 2)

(output logic [2*wid-1:0] prod,

input logic [wid-1:0] plier, input logic [wid-1:0] cand, input clk);

localparam int iterations = (wid + pp_per_cycle - 1) / pp_per_cycle;

localparam int iter_lg = $clog2(iterations);

localparam int wid_lg = $clog2(wid);

logic [iter_lg:0] iter;

wire [2*wid-1:0] accum_sum_a[0:pp_per_cycle], accum_sum_b[0:pp_per_cycle];

logic [2*wid-1:0] accum_sum_a_reg, accum_sum_b_reg;

assign accum_sum_a[0] = accum_sum_a_reg;

assign accum_sum_b[0] = accum_sum_b_reg;

for (genvar i=0; i<pp_per_cycle; i++) begin

wire [wid_lg:1] pos = iter * pp_per_cycle + i;

wire [2*wid-1:0] pp = pos < wid && cand[pos] ? plier << pos : 0;

CW_csa #(2*wid) csa

(.sum(accum_sum_a[i+1]), .carry(accum_sum_b[i+1]), .a(accum_sum_a[i]), .b(accum_sum_b[i]), .c(pp));

end

always @(posedge clk)

if (iter == iterations) begin

prod <= accum_sum_a_reg + accum_sum_b_reg;

accum_sum_a_reg <= 0;

accum_sum_b_reg <= 0;

iter <= 0;

end else begin

prod <= prod;

accum_sum_a_reg <= accum_sum_a[pp_per_cycle];

accum_sum_b_reg <= accum_sum_b[pp_per_cycle];

iter <= iter + 1;

end

endmodule USE NEXT PAGE FOR SOLUTION

CW_csa

a
c
c
u
m
_
s
u
m
-

_
a
_
re
g

+

+

=

ite
r

<<

p
ro
d

en

it
e
ra

ti
o
n
s

1

0

0

prod

plier

cand

a
c
c
u
m
_
s
u
m
-

_
b
_
re
g

pp

accum_sum_a[1]

accum_sum_b[1]

csa

CW_csa

csa

* +

<

2
 (

p
p
_
p
e
r_

it
e
ra

ti
o
n
)

0
 (

i)

w
id

<<

0 pp

* +

<

1
 (

i)

w
id

2 (pp_per_iteration)

0

wid

wid

USE NEXT PAGE FOR SOLUTION

4

(a) Show optimizations that might be performed that exploit the valuem = 2 (that is, pp_per_iteration=2).

(b) Show the optimizations that might be performed assuming that wid is odd, and assuming that wid is
even, both for m = 2.

�Modify diagram to show optimizations for pp per iteration = m = 2 and arbitrary wid.

�Modify diagram to show optimizations for pp per iteration = m = 2 and odd wid.

�Modify diagram to show optimizations for pp per iteration = m = 2 and even wid.

CW_csa

a
c
c
u
m
_
s
u
m
-

_
a
_
re
g

+

+

=

ite
r

<<

p
ro
d

en

it
e
ra

ti
o
n
s

1

0

0

prod

plier

cand

a
c
c
u
m
_
s
u
m
-

_
b
_
re
g

pp

accum_sum_a[1]

accum_sum_b[1]

csa

CW_csa

csa

* +

<

2
 (

p
p
_
p
e
r_

it
e
ra

ti
o
n
)

0
 (

i)

w
id

<<

0 pp

* +

<

1
 (

i)

w
id

2 (pp_per_iteration)

0

wid

wid

<<

1 Even bits

only.

Odd bits

only.

1 <<

z

z

z
Mods for pp_per_iteration = 2.

Mods for even

wid only.

Mods for even

or odd wid.

z Zero-cost hardware. r Reduced-cost hardware.

rr

r

Solution appears above. Three sets of changes are shown. The changes in green are optimizations possible with pp per iteration=2,
the changes in blue are possible with any value of wid (odd or even), and the changes in purple are possible only when wid is even.
Hardware labeled with a circled z is zero-cost, meaning that the outputs are either constants or are connected directly to the inputs.
(In class this was called renaming bits.) The hardware labeled with a circled r is a lower cost version of the hardware depicted. In
particular, the shift so labeled is lower cost because it only needs to shift by an even number of positions. The r-labeled multiplexors
are lower cost because half of their inputs are unused (and so will not be synthesized).

If we know that pp per iteration is 2 then the shift amounts for plier just shifting iter by one bit (for i=0) or shifting
and placing a 1 in the LSB position (for i=1). These observations are used to eliminate the multipliers and adders. (One of the
adders is shown as zero-cost.) Further, in the i=0 section we know that only even-numbered bit positions are from cand, reducing
the cost of the multiplexor; a similar optimization is made for the i=1 section.

The < modules are used to determine if the cand bit position is valid. For the i=1 section the cand bit position in the last
iteration will be invalid if wid is odd. (For example, suppose wid=5 and consider the third iteration, when iter is 2. The bit
position sought by the i=0 section will be 2× 2 = 4, the MSB of cand. The i=1 section will look for bit 2× 2 + 1 = 5 which
is invalid, though with a typical adder the mulitplexor might be commanded to look at bit 0, which is wrong. The less-than module
and AND gate prevent the bit from being used.)

In contrast, there will never be an invalid bit position when wid is even. So, when wid is even both the optimizations shown in blue
and purple can be made. If wid is odd then the blue optimizations can be made but the purple optimizations cannot be made.

5

Problem 2, continued:

(c) The cost of the shifters with input plier in the design on the previous pages is significant. Explain how
these shifters can be eliminated by adding a register. Quickly sketch the hardware to illustrate your answer.

� Show how a register can be used to eliminate the costly shifters.

Solution appears below in green, based on the optimized even-wid multiplier. The shift-by-any-amount (or at least any even amount)
shifter (which would occupy the hand-drawn circle in the diagram) is replaced by a shifter that shifts by exactly pp per iteration

positions, which is a zero-cost device. The output of this shifter is stored in a register and used in the next iteration. The shift
amounts that are needed in a particular iteration can be obtained using only these zero-cost shifters. The multiplexor and register
that we’ve added is not free, but their should be less than the shifters when about three or more iterations are needed.

CW_csa

a
c
c
u
m
_
s
u
m
-

_
a
_
re
g

+

+

=

ite
r

p
ro
d

en

it
e
ra

ti
o
n
s

1

0

0

prod

in_plier

cand

a
c
c
u
m
_
s
u
m
-

_
b
_
re
g

pp

accum_sum_a[1]

accum_sum_b[1]

csa

CW_csa

csa

0
 (

i)

0 pp

+

1
 (

i)

0

wid

wid

<<

1 Even bits

only.

Odd bits

only.

1 <<

z

z

z

z Zero-cost hardware. r Reduced-cost hardware.

r

<<
z

ation)

hift replac

and zero-cost shifter.

(d) Explain how the streamlined multiplier described in class eliminated the plier shifter without having to
add a register.

� Show how the streamlined multiplier does not need an extra register to eliminate the shifter.

The streamlined multiplier shifts the accumulated product rather than the multiplier. (This may not be possible using CSAs.)

6

Problem 3: [10 pts] The module below computes the prefix sum of a sequence of integers at its input.

module prefix_sum #(int len=8, int wid = 8)

(output logic [wid:1] psum [len], input [wid:1] elts[len]);

always @* begin

psum[0] = elts[0];

for (int i=1; i<len; i++) psum[i] = psum[i-1] + elts[i];

end

endmodule

(a) Show the hardware that would be synthesized for the module before optimization, elaborated with
parameters len=4 and wid=8. Label the input ports elts[0], elts[1], elts[2], and elts[3]; and label
the output ports psum[0], psum[1], psum[2], and psum[3].

� Show synthesized hardware.

Synthesized hardware appears below.

+

+

+

8elts[0]

psum[3]

8elts[1]

8elts[2]

8elts[3]
8

psum[2]8

psum[1]8

psum[0]8
prefix_sum

(b) Estimate the delay for the synthesized hardware before optimization. Use w for the value of wid and L

for len. Assume that a w-bit adder has delay w.

�Delay in terms of w and L:

The delay is (L− 1)w.

7

Problem 4: [15 pts] Answer the following questions about the Verilog module below.

module timing();

logic [7:0] a, e, f2, g, g1, g2; logic clk; wire [7:0] e1, f, f1;

initial begin

clk = 0;

a = 11;

#1;

a = 1;

a <= 22;

a <= #5 a + 1;

#9;

a = 7;

e = 10;

f2 = 30;

g = 40;

g1 = 50;

g2 = 60;

#10;

// B0

a <= 700;

clk = 1;

#1;

// POINT X (See subproblem.)

end

always @(posedge clk) e = a; // B1

always @* e1 = a; // B2

always @* f = e + 1; // B3

always @* f1 = e1 + 1; // B4

always @(posedge clk) f2 <= e + 1; // B5

always @(posedge clk) begin // B6

g = f; g1 = f1; g2 = f2; end

endmodule

(a) Show values for a versus time in the table below. For this part, only a. The table already shows that
a has value 11 from time 0 to time 1. Extend the table as long as necessary, and be sure to show values
for both t and a. Note: The original exam did not provide the table. Also, in the original exam there were

differences in how a was assigned.

�Complete the table.

t 0 1 6 10 20
a 11 22 2 7 700

Solution appears above. After t = 1 a gets the value 22 because of the non-blocking assignment. However, the delayed assignment
(a <= #5 a + 1;) uses the value of 1 for a since the non-blocking assignment of 22 at that point had not taken effect. (It must
wait until the scheduler gets to the NBA region of the event queue.)

Notice that delays (such as #10 are relative to the current time, not to t = 0).

8

(b) Show the values that will be present on g, g1, g2 when execution reaches the POINT X comment in the
module above. For partial credit also show intermediate values for other signals used to compute the g’s.
(Look at next part before solving this one.)

�At POINT X g= 11 , g1= 8 , g2= 8 .

Solution appears above. The g’s are assigned on the positive edge of the clock in block B6. To solve the problem one needs to
figure out what has already executed. Before point B0 in the code a is 7, e is 10, and f2 is 30, set by the procedural code, and the
combinational (@*) always blocks would have set f1 to 8 and f to 11. After the procedural code assigns clk=1 and reaches the #1
the scheduler will schedule the posedge clk blocks in arbitrary order. After B0 finishes the three newly scheduled blocks B1, B5,
and B6, are placed in the active region of the event queue. Block B1 changes e to 7, which causes B3 to be scheduled in the inactive
region. The scheduler continues with the active region, next executing B5, which schedules an update event in the NBA region that
will set f2 to 8. Next B6 is executing, assigning the g’s. Variable g is assigned 11, notice that B3 is still in the active region and so
has not gotten its chance to modify f. Variable g1 is assigned 8. Variable g2 is assigned 30. Notice that B5 adds 1 to e before B6
executes but the update is done afterwards. Block B3 executes after B6. Therefore the “old” values are used for g and g2.

(c) Recall that the event queue used for Verilog simulation has active, inactive, and NBA regions, among
others. Just before B1 starts execution in module timing above the active region might contain B1, B5, and
B6 (see the comments on the right). (What the other regions contain is part of this problem.) Show the
contents of the three regions when B5 starts. Assume that events in a region are scheduled in order.

�When B5 starts: Active = { B6 }. Inactive = { B3 }. NBA = { a <= 700 }.

Solution appears above. When B5 starts only B6 remains in the active region (see the solution to the previous problem). Block B3
has been scheduled in the inactive region due to the assignment of e by B1. The update to a was scheduled in the NBA (non-blocking
assignment) region by B0 in the initial block.

9

Problem 5: Answer each question below.

(a) [5 pts] Module add3 is supposed to compute the sum of its three inputs using instances of our_adder,
but it won’t work. Fix the problem. The fixed module should still use our_adder.

�Fix add3.

module add3(output [15:0] sum, input [15:0] a,b,c);

our_adder a1(sum , a , b);

our_adder a2(sum , sum , c);

endmodule

/// SOLUTION

module add3(output [15:0] sum, input [15:0] a,b,c);

wire [15:0] sum1;

our_adder a1(sum1, a, b);

our_adder a2(sum, sum1, c);

endmodule

Solution appears above. The problem was that the same object, sum, was connected to the output of both adders. Its value therefore
is undefined. In the solution a new wire, sum1, is declared and used as the output of the first adder.

(b) [8 pts] The output of the module below is like the input except the bit positions are reversed (after
enough clock cycles). Re-write the module so that it synthesizes to combinational logic (the clk input will
no longer be needed). Add a parameter to indicate the input and output bit width.

module bitrev(output logic [7:0] x, input [7:0] a, input clk);

logic [2:0] pos;

initial pos = 0;

always @(posedge clk) begin

x[pos] = a[7-pos];

pos++;

end

endmodule

�Re-write so that it is combinational.

� Include a parameter wid to specify the size.

// SOLUTION

module bitrev_s #(int wid = 8) (output logic [wid-1:0] x, input [wid-1:0] a);

always @* for (int i=0; i<wid; i++) x[i] = a[wid-i-1];

endmodule

Solution appears above. Since the logic is combinational there is no need for a clock input. Notice that this will synthesize into a
module that contains no logic. All it does is rename signals. This would not be a problem if it were part of a larger design, but if
this module were the only thing fabricated on a chip money could have been better spent.

10

Problem 6: Answer each question below.

(a) [5 pts] A Verilog module computes a result in one clock cycle. In our design we need that result in 3 ns,
which can easily be achieved. The right way to achieve that in Cadence Encounter is to use the define_clock
command to set the target clock period to 3 ns. Suppose instead we used define_clock to set the period
to 1 ps, an impossible goal. Note: The original exam did not have the “can easily be achieved” phrase.

�Would the synthesized design meet our 3 ns performance goal?

Yes. Even though 1 ps is impossible, the synthesis program will synthesize a circuit with as short a delay as it’s capable of, and
according to the problem it can easily create a circuit with a delay less than 3 ns. Note: For those taking the original exam

the answer would be: Yes, if the synthesis program is capable of reaching the 3 ns goal.

�Considering typical design goals, what would be the disadvantage of setting the period to 1 ps for our design
even though we needed 3 ns?

Short answer: The disadvantage is that the cost of the synthesized circuit might be higher than would be obtained when setting the
clock period to our performance target, 3 ns.

Suppose the synthesis program generates a circuit with a delay of 2.1 ns. That meets our performance goal, but so would a 3 ns
circuit. However the 2.1 ns circuit might have a higher cost than the 3 ns circuit since the optimization program tries to minimize
cost while meeting design constraints. Since cost minimization is a typical design goal, setting the clock period to 1 ps would result
in a worse design.

(b) [10 pts] In the module below, translate directives are used to prevent the synthesis program from
reading the line with initial.

module mult_seq(output logic [311:0] prod, input logic [15:0] plier, cand, input clk);

logic [3:0] pos; logic [31:0] accum;

// cadence translate_off <-- Translate synthesizer directive.

initial pos = 0;

// cadence translate_on <-- Translate synthesizer directive.

always @(posedge clk) begin

if (pos == 0) begin prod = accum; accum = 0; end

if (cand[pos] == 1) accum += plier << pos;

pos++;

end

endmodule

�Why shouldn’t the synthesis program see the line with initial?

�What would happen if the synthesis program saw the initial line?

Short answer: The synthesis program should not see the initial line because it has no way to synthesize corresponding hardware,
if it saw the line it would generate an error message.

The synthesis program should not see the initial line because it is unsynthesizable, and so would result in an error message.
It is unsynthesizable because the developers of the synthesis program (this semester Cadence Encounter RTL Compiler) and the
developers of probably every other HDL synthesis program do not think it’s worth the trouble to generate special “initial” hardware
that only does something when, say, the power is turned on. The correct way of achieving that kind of behavior is by providing a
reset input to the module.

�What would happen if the simulation program didn’t see the line with initial?

The value of pos would remain at x (undefined).

11

(c) [7 pts] All four variables below have a size of 32 bits, but there are differences between them.

logic [31:0] a;

logic b [31:0];

logic [0:31] c;

int e;

All four variables above hold 32 bits. (Unlike C, SystemVerilog sets the size of int to be 32 bits.)

Variable a is called a packed vector. It is interpreted as a single 32-bit quantity, and so can conveniently be used in expressions such
as a+x.

�Difference between a and b?

Variable b is interpreted as a 32-element array of 1-bit elements.

�Difference between a and c?

Both a and c are packed vectors and are interpreted as 32-bit quantities. However the bit numbering of the two are different. That
makes a difference in expressions that refer to bit positions, such as y = a[10]; , but it does not make a difference in expressions
that don’t refer to bit positions, such as y = a + x;.

�Difference between a and e?

Each bit in a logic object can have four states, 0, 1, x, and z. Type int is a 32-bit quantity in which each bit is either 0
or 1. The logic type is intended for objects that will synthesize into hardware, while int is intended for other uses such as in
testbenches.

12

