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Problem 1: [20 pts] The encode module below, based on Homework 4, is used to convert a decimal value
to binary one ASCII digit at a time. Input val_prev is the binary value so far, and output val_next is the
binary value after using ASCII character ascii_char. If ascii_char isn’t a numeric digit non_digit is set
to 1 and val_next is set to zero. There is also an overflow output.

module encode

#( int width = 32 )

(output logic [width-1:0] val_next,

output logic overflow, output uwire non_digit,

input uwire [7:0] ascii_char, input uwire [width-1:0] val_prev);

logic [width+3:0] val_curr; logic [3:0] high_bits, bin_char;

assign non_digit = ascii_char < Char_0 || ascii_char > Char_9;

always_comb begin

bin_char = ascii_char - Char_0;

val_curr = 10 * val_prev + bin_char;

high_bits = val_curr >> width;

if ( non_digit ) begin overflow = 0; val_next = 0; end

else begin

overflow = high_bits != 0;

val_next = val_curr;

end

end

endmodule

(a) Show the hardware that will be synthesized for this module. Take into account optimizations (see the
next subproblem).

� Synthesized hardware.

Two versions of the solution appear below. In the first only basic optimizations are shown. The optimizations shown are for the
overflow logic and for the computation of high_bits.

In the Verilog high_bits, which is four bits, is the result of an expression using a right shift operator. All this does is assign bits
35 to 32 of val_curr to high_bits, so in the diagram below that is all that is shown. The other basic optimization is logic
for overflow. Since overflow is one bit it makes more sense to use simple gates rather than a multiplexor, and that is what is
shown.
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The solution below shows further optimizations: the subtractor to compute bin_char is eliminated, the times-ten multiplier has
been replaced by an adder (that’s shown in blue), and the !=0 operation on high_bits is now shown as a four-input OR gate (in
green). The replacement for the multiplier uses two constant shifters, they are shown by heavy vertical lines. (The heavy vertical
lines indicate, in this case, the grouping together of bits. In this case putting one or two 0’s in the LSB position to form a new
quantity.)
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(b) Indicate how many units such as adders, multipliers, shifters, and multiplexors will actually be present
in the optimized hardware. The count should be based on the units that are present after optimization, not
on the hardware first inferred from the Verilog.

�Number of adders. �Number of multipliers. �Number of shifters. �Number of multiplexors.

Adders, 2; multipliers, 0; shifters, 0, number of multiplexors, 1. See the solution to the previous part.
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Problem 2: [20 pts] Appearing below is another encode module, this one has a new input radix, which
indicates the radix (base) of the number to be converted. When completed the module should function like
the module from the previous problem, except that the digits form a radix-radix number. For example, if
radix were 10 it would operate like the previous module. If radix were 8 the digits would be octal, etc.

(a) Modify the module so that it takes into account the radix. Assume that radix can be any value from 2
to 16. Note that for a radix of 16 the valid digits are 0-9 and A-F (only consider upper case).

�Modify the module to generate the correct non_digit output.

�Modify the module to update val_next correctly given the radix.

Solution appears below. An is_af signal is added to detect legitimate hexadecimal digits. A digit_val value (value of the current
digit) is computed which is correct for radix 2 to 16 (and higher). To detect if the current digit is valid (see digit_in_range),
the hardware checks if it’s in the range 0-9 or A-F. If so, it then looks at the value to make sure that it’s less than radix.

Grading Notes: In many solutions incorrectly rejected digits in the range 0-9 when radix was greater than
10. A surprisingly large number of solutions used case statements to compute non_digit with a case for
each radix value.

typedef enum {Char_0 = 48, Char_9 = 57, Char_A = 65, Char_F = 70} Chars;

module encode_radix #( int width = 32 )

(output logic [width-1:0] val_next,

output logic overflow, output uwire non_digit,

input uwire [7:0] ascii_char, input uwire [width-1:0] val_prev,

input uwire [4:0] radix);

logic [width+3:0] val_curr;

logic [3:0] high_bits; // SOLUTION: Remove bin_char, not used.

// SOLUTION

uwire is_digit = ascii_char >= Char_0 && ascii_char <= Char_9;

uwire is_af = ascii_char >= Char_A && ascii_char <= Char_F;

uwire [3:0] digit_val = ascii_char - ( is_digit ? Char_0 : Char_A - 10 );

uwire digit_in_range = ( is_digit || is_af ) && digit_val < radix;

assign non_digit = !digit_in_range;

always @* begin

val_curr = radix * val_prev + digit_val; // SOLUTION: Multiply by radix.

// SOLUTION ends here, text below is unchanged.

high_bits = val_curr >> width;

if ( non_digit ) begin

overflow = 0;

val_next = 0;

end else begin

overflow = high_bits != 0;

val_next = val_curr;

end

end

endmodule
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Problem 2, continued:

(b) Suppose that module encode_radix (from the previous part) were to be used in a larger design in which
the values of radix could only be 2, 8, 10, and 16. Also suppose that the synthesis program can’t figure
out that radix is limited to these values. Why would the cost be higher than necessary, and how could
encode_radix be modified to get the lower cost hardware?

�Explain why the cost will be higher than is necessary.

Short answer: The synthesis program will generate a regular multiplier when all that’s really needed are some shifts and an add.

Longer explanation: The Verilog code uses a multiply operator in the expression assigning val_curr. For the decimal version of the
hardware (from Problem 1 and the Homework assignment) one operand of the multiply is the constant 10, and so the multiplication
operator will be synthesized as an adder (computing the sum val_prev[width-1:1] + val_prev[width-1:3] which is
equivalent to 2 * val_prev[width-1:0] + 8 * val_prev[width-1:0]). For part a of this problem where radix
could take on any value a true multiplier had to be synthesized (albeit one in which one input was only four bits).

But in this part we are limiting the radices that are available, so we don’t really need a full multiplier. In fact, other than radix 10,
all we need to do is shift by a constant amount. The synthesis program could generate a much lower cost design IF it were aware
of the limited range of radix values, but according to the problem it’s not (meaning the synthesis program expects a full range of
radix values).

� Show the changes to encode_radix so that the synthesis program will generate the lower cost design. The
port definitions cannot be changed.

Since the problem is that the synthesis program will generate a real multiplier when we use radix with the multiply operator, we
won’t use radix with the multiplier operator. Instead we’ll use a case statement, which is shown below. Notice that a default case
is included, that’s to make sure that a latch is not synthesized for val_scaled. Also note that the default case matches one of the
other cases, that’s to make sure that unused logic is not synthesized.

always_comb begin

case ( radix )

2: begin

val_curr = 2 * val_prev + digit_val;

high_bits = val_curr >> 2;

end

8: begin

val_curr = 8 * val_prev + digit_val;

high_bits = val_curr >> 8;

end

10: begin

val_curr = 10 * val_prev + digit_val;

high_bits = val_curr >> 10;

end

16: begin

val_curr = 16 * val_prev + digit_val;

high_bits = val_curr >> 16;

end

default: begin

val_curr = 10 * val_prev + digit_val;

high_bits = val_curr >> 10;

end

endcase
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Problem 3: [20 pts] Ap-
pearing to the right is hard-
ware and a corresponding
Verilog module. The mod-
ule is incomplete, finish it.
Hint: The hardware includes
an end-around shift, that’s
the part with the msb/lsb la-
bels.

�Add sizes and other infor-
mation to port declarations.

�Finish the Verilog code.

Solution appears below. The size for sh_pat is 32 bits since it’s connected to the 32-bit end-around shift unit. The size of pat is
32 bits since it’s connected to a 32-bit input port. The size of per is set to six bits based on the comparison with 32 in the diagram.
A size of less than six bits could not hold a 32, and anything larger than six bits would not be needed because the value of per stops
incrementing when it reaches a value of 32.

From the diagram we find three edge-triggered registers, pat, sh_pat, and per. Edge triggered registers are specified in Verilog
using always @ ( posedge clk ) constructs, in this case using a separate always block for each register is cleanest.

The done output was realized using a continuous assignment. Because all of the values needed for done are register outputs, the
code for done could have been put in an always block, but only if there was a single always block for all three registers, which
is not the case with the solution below.

module find_period

(output logic [5:0] per, output uwire done,

input uwire [31:0] in_pat,

input uwire start, input uwire clk);

logic [31:0] pat, sh_pat;

always_ff @( posedge clk ) if ( start ) pat <= in_pat;

uwire [31:0] sh_in = start ? in_pat : sh_pat;

always_ff @( posedge clk )

if ( start || !done ) sh_pat <= { sh_in[30:0], sh_in[31] };

always_ff @( posedge clk )

if ( start ) per <= 1;

else if ( !done ) per <= per + 1;

assign done = pat == sh_pat || per == 32;

endmodule
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Problem 4: [20 pts] The Verilog below is the key lookup part of the simple CAM module used in class.

logic [dwid:1] storage_data [ssize];

logic [kwid:1] storage_key [ssize];

logic [ssize-1:0] storage_full;

always_comb begin

mmatch = 0; midx = 0;

for ( int i=0; i<ssize; i++ )

if ( storage_full[i] && storage_key[i] == key ) begin mmatch = 1; midx = i; end

end

assign out_data = storage_data[midx];

(a) Starting with the registers and key shown below, sketch the hardware synthesized for this code without
optimization. The hardware should produce values for mmatch and midx (but not out_data). Do so for
ssize=3. In class we often showed part of this as a box labeled “priority encoder” (or “pri” for short), in
this problem actually show the hardware.

� Synthesized hardware for ssize = 3 to generate � mmatch and � midx.

Solution appears below in blue. Note that the first (uppermost) multiplexor can trivially be optimized out since both of its inputs are
zero. A chain of multiplexors was chosen to generate midx, and a similar chain could have been used for mmatch. However the OR
gate performs the same operation and is much simpler.

�	
��
��������

�	
��
���������

�	
��
��������

�	
��
���������

�	
��
��������

�	
��
���������

key

=

=

=

0

0

1

2

m���

mm�	�h

(b) Assume that the cost of an a-bit comparison unit is a, and its delay is also a. Assume that the cost of an
a-input, b-bit multiplexor is ab and the delay is 1. Compute the cost and delay of the logic used to compute
midx in terms of ssize (use s in your formulas) and kwid (use k in your formulas). As with the previous
part, do this for the unoptimized hardware. Remember to solve this for an arbitrary value of ssize (s), not
for s = 3.
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�Cost in terms of s and k:

From the diagram it’s clear that there are s k-bit comparison units, they cost sk units. The multiplexors increase in size from the
beginning to the end of the chain. The mux at the end of the chain must be large enough to hold the value s − 1, which requires
⌈log

2
s⌉ bits. For simplicity assume that all multiplexors are that size, then the multiplexor cost is 2s⌈log

2
s⌉ units. The s-input

OR gate can be assumed to have cost s− 1 (by setting the cost of a 2-input OR gate at 1).

The total cost is sk + 2s⌈log
2
s⌉+ s− 1 units .

�Delay in terms of s and k:

From the synthesized hardware it should be clear that the critical path used to compute the delay starts at the first comparison unit
and continues through the multiplexor chain. The k-bit comparison takes time k, and the length-s multiplexor chain has delay s.

The total delay is k + s units .
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Problem 4, continued: Appearing below is a variation on the key lookup from the CAM module. Instead
of finding a matching key it finds the largest stored key that is ≤ to the lookup key. Note that this version
doesn’t include storage_full.

logic [dwid:1] storage_data [ssize];

logic [kwid:1] storage_key [ssize];

always_comb begin

midx = 0; bkey = 0;

for ( int i=0; i<ssize; i++ )

if ( storage_key[i] >= bkey && storage_key[i] <= key ) // READ THIS LINE CAREFULLY

begin midx = i; bkey = storage_key[i]; end

end

assign out_data = storage_data[midx];

(c) Sketch the hardware for ssize=3.

� Sketch the synthesized hardware needed to generate bkey.

Solution appears below, with the critical path shown in red. An important thing to notice is that the ≥ comparison at iteration i is
being made with the value of bkey produced in iteration i-1. Those values of bkey pass through the multiplexor chain, and for
that reason the delay in this circuit is significantly longer than in the version from the previous part. See the next sub-part.
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(d) Compute the cost and performance in terms of ssize (use s) and the key size (use k). As before a k-bit
comparison unit (equality or magnitude) costs k and has a delay of k and an a-input, b-bit mux costs ab and
has a delay of 1. Hint: There’s a big difference.

�Cost in terms of s and k:

There are now 2s comparison units, costing 2sk cost units. The s multiplexors now carry k-bit values, so their cost is 2sk. Plus

there are s AND gates which we’ll set at cost s. The total cost is 4sk + s units , which is significantly higher.

�Delay in terms of s and k:

In the diagram of the synthesized hardware the critical path appears in red. As before, the critical path passes through the multiplexor
chain, but this time the ≥ units are also on the critical path. The critical path includes now s ≥ units, s muxen, and s AND gates.

The total delay is s(k + 2) units , which is significantly higher than the delay of the first version used in this problem.
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Problem 5: [20 pts] Answer each question below.

(a) The module below is supposed to count from 0 to max (inclusive), then return to zero. Strictly speaking
it does, but there are problems, including the fact that it’s not synthesizable. Fix the problems.

module counter #(int max = 3)(output logic [7:0] count, input uwire clk);

always @( posedge clk ) begin

count <= count + 1;

end

always @* begin

if ( count == max ) count <= 0;

end

endmodule

�Why isn’t the module synthesizable?

It’s not synthesizable because count is assigned in two different always blocks.

�Fix the problem.

Just combine the two blocks:

module counter #(int max = 3)(output logic [7:0] count, input uwire clk);

always @( posedge clk ) count <= count == max ? 0 : count + 1;

endmodule
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(b) There is a problem with the module below due to the way that a is declared.

module sa1(output uwire a, input uwire c, d);

always_comb begin

a = c & d;

end

endmodule

The problem is that a is being declared as a net type (which includes uwire) but it is being assigned in procedural code. Anything
assigned in procedural code must be a variable type.

�Fix the problem by changing the declaration of a.

module sa1(output logic a, input uwire c, d);

// SOLUTION: Declare a as a variable type (change uwire a to logic a).

always_comb begin

a = c & d;

end

endmodule

�Fix the problem without changing the declaration of a.

// SOLUTION

module sa1(output uwire a, input uwire c, d);

assign a = c & d;

endmodule

(c) Describe a situation in which using always_comb has a benefit over using always @*.

� Situation where always_comb helps.

In the code below x is not always assigned and so it could be synthesized into a latch (level-triggered flip-flop). But the SystemVerilog-
literate programmer used always_comb because he or she intended purely combinational logic—no latches. The fact that x was
not always assigned was an oversight on the part of the programmer. Because always_comb was used well-written Verilog tools
will warn the programmer about this. That’s how it helps.

always_comb begin

if ( a < 10 )

x = a + b;

else if ( a > 1000 )

x = a - b;

end
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(d) The module below is supposed to be computing x2 + y2.

module sa2(output logic [63:0] sos, input uwire [63:0] x, y);

logic [63:0] a1, b1, a2, b2;

uwire [63:0] p, s;

fpmul f1(p,a1,b1);

fpadd f2(s,a2,b2);

always @* begin

// Compute x^2.

a1 = x; b1 = x;

#1;

sos = p;

// Compute y^2.

a1 = y; b1 = y;

#1;

// Compute x^2 + y^2.

a2 = p; b2 = sos;

#1;

sos = s;

end

endmodule

�Explain why the module is not synthesizable.

It’s not synthesizable because it uses delays.

�Fix the problem.

The module is trying to use fpmul twice. Since there is no clock input, there is no way to do that. A simple solution would be to
instantiate a second fpmul and connect it appropriately, that’s the solution shown below. (A more complex solution would use a
clk input and use the same multiplier over two cycles.)

// SOLUTION

module sa2sol(output uwire [63:0] sos, input uwire [63:0] x, y);

uwire [63:0] p, s;

fpmul fm1(p,x,x);

fpmul fm2(s,y,y);

fpadd f2(sos,p,s);

endmodule
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