
Name

Digital Design using HDLs

EE 4755

Final Examination

Monday, 8 December 2014 10:00-12:00 CST

Alias

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (20 pts)

Problem 5 (20 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/v/

Problem 1: [20 pts] The encode module below, based on Homework 4, is used to convert a decimal value
to binary one ASCII digit at a time. Input val_prev is the binary value so far, and output val_next is the
binary value after using ASCII character ascii_char. If ascii_char isn’t a numeric digit non_digit is set
to 1 and val_next is set to zero. There is also an overflow output.

module encode

#(int width = 32)

(output logic [width-1:0] val_next,

output logic overflow, output uwire non_digit,

input uwire [7:0] ascii_char, input uwire [width-1:0] val_prev);

logic [width+3:0] val_curr; logic [3:0] high_bits, bin_char;

assign non_digit = ascii_char < Char_0 || ascii_char > Char_9;

always_comb begin

bin_char = ascii_char - Char_0;

val_curr = 10 * val_prev + bin_char;

high_bits = val_curr >> width;

if (non_digit) begin overflow = 0; val_next = 0; end

else begin

overflow = high_bits != 0;

val_next = val_curr;

end

end

endmodule

(a) Show the hardware that will be synthesized for this module. Take into account optimizations (see the
next subproblem).

Synthesized hardware.

(b) Indicate how many units such as adders, multipliers, shifters, and multiplexors will actually be present
in the optimized hardware. The count should be based on the units that are present after optimization, not
on the hardware first inferred from the Verilog.

Number of adders. Number of multipliers. Number of shifters. Number of multiplexors.

2

Problem 2: [20 pts] Appearing below is another encode module, this one has a new input radix, which
indicates the radix (base) of the number to be converted. When completed the module should function like
the module from the previous problem, except that the digits form a radix-radix number. For example, if
radix were 10 it would operate like the previous module. If radix were 8 the digits would be octal, etc.

(a) Modify the module so that it takes into account the radix. Assume that radix can be any value from 2
to 16. Note that for a radix of 16 the valid digits are 0-9 and A-F (only consider upper case).

Modify the module to generate the correct non_digit output.

Modify the module to update val_next correctly given the radix.

typedef enum {Char_0 = 48, Char_9 = 57, Char_A = 65, Char_F = 70} Chars;

module encode_radix #(int width = 32)

(output logic [width-1:0] val_next,

output logic overflow, output uwire non_digit,

input uwire [7:0] ascii_char, input uwire [width-1:0] val_prev,

input uwire [4:0] radix);

logic [width+3:0] val_curr;

logic [3:0] high_bits, bin_char;

always_comb begin

val_curr =

high_bits = val_curr >> width;

if (non_digit) begin

overflow = 0;

val_next = 0;

end else begin

overflow = high_bits != 0;

val_next = val_curr;

end

end

endmodule

3

Problem 2, continued:

(b) Suppose that module encode_radix (from the previous part) were to be used in a larger design in which
the values of radix could only be 2, 8, 10, and 16. Also suppose that the synthesis program can’t figure
out that radix is limited to these values. Why would the cost be higher than necessary, and how could
encode_radix be modified to get the lower cost hardware?

Explain why the cost will be higher than is necessary.

Show the changes to encode_radix so that the synthesis program will generate the lower cost design. The
port definitions cannot be changed.

4

=

p
a
t

en

s
h
_
p
a
t

en

31:31

msb

lsb

30:0

p
e
r

en

+
1

=
32

start

in_pat

done

per
clk

find_period

32

Problem 3: [20 pts] Ap-
pearing to the right is hard-
ware and a corresponding
Verilog module. The mod-
ule is incomplete, finish it.
Hint: The hardware includes
an end-around shift, that’s
the part with the msb/lsb la-
bels.

Add sizes and other infor-
mation to port declarations.

Finish the Verilog code.

module find_period

(output per, output done,

input in_pat,

input start, input clk);

endmodule

5

Problem 4: [20 pts] The Verilog below is the key lookup part of the simple CAM module used in class.

logic [dwid:1] storage_data [ssize];

logic [kwid:1] storage_key [ssize];

logic [ssize-1:0] storage_full;

always_comb begin

mmatch = 0; midx = 0;

for (int i=0; i<ssize; i++)

if (storage_full[i] && storage_key[i] == key) begin mmatch = 1; midx = i; end

end

assign out_data = storage_data[midx];

(a) Starting with the registers and key shown below, sketch the hardware synthesized for this code without
optimization. The hardware should produce values for mmatch and midx (but not out_data). Do so for
ssize=3. In class we often showed part of this as a box labeled “priority encoder” (or “pri” for short), in
this problem actually show the hardware.

Synthesized hardware for ssize = 3 to generate mmatch and midx.

storage_key[0]

storage_full[0]

storage_key[1]

storage_full[1]

storage_key[2]

storage_full[2]

key

(b) Assume that the cost of an a-bit comparison unit is a, and its delay is also a. Assume that the cost of an
a-input, b-bit multiplexor is ab and the delay is 1. Compute the cost and delay of the logic used to compute
midx in terms of ssize (use s in your formulas) and kwid (use k in your formulas). As with the previous
part, do this for the unoptimized hardware. Remember to solve this for an arbitrary value of ssize (s), not
for s = 3.

Cost in terms of s and k:

Delay in terms of s and k:

6

Problem 4, continued: Appearing below is a variation on the key lookup from the CAM module. Instead
of finding a matching key it finds the largest stored key that is ≤ to the lookup key. Note that this version
doesn’t include storage_full.

logic [dwid:1] storage_data [ssize];

logic [kwid:1] storage_key [ssize];

always_comb begin

midx = 0; bkey = 0;

for (int i=0; i<ssize; i++)

if (storage_key[i] >= bkey && storage_key[i] <= key) // READ THIS LINE CAREFULLY

begin midx = i; bkey = storage_key[i]; end

end

assign out_data = storage_data[midx];

(c) Sketch the hardware for ssize=3.

Sketch the synthesized hardware needed to generate bkey.

storage_key[0]

storage_key[1]

storage_key[2]

key

(d) Compute the cost and performance in terms of ssize (use s) and the key size (use k). As before a k-bit
comparison unit (equality or magnitude) costs k and has a delay of k and an a-input, b-bit mux costs ab and
has a delay of 1. Hint: There’s a big difference.

Cost in terms of s and k:

Delay in terms of s and k:

7

Problem 5: [20 pts] Answer each question below.

(a) The module below is supposed to count from 0 to max (inclusive), then return to zero. Strictly speaking
it does, but there are problems, including the fact that it’s not synthesizable. Fix the problems.

module counter #(int max = 3)(output logic [7:0] count, input uwire clk);

always @(posedge clk) begin

count <= count + 1;

end

always @* begin

if (count == max) count <= 0;

end

endmodule

Why isn’t the module synthesizable?

Fix the problem.

8

(b) There is a problem with the module below due to the way that a is declared.

module sa1(output uwire a, input uwire c, d);

always_comb begin

a = c & d;

end

endmodule

Fix the problem by changing the declaration of a.

Fix the problem without changing the declaration of a.

(c) Describe a situation in which using always_comb has a benefit over using always @*.

Situation where always_comb helps.

9

(d) The module below is supposed to be computing x2 + y2.

module sa2(output logic [63:0] sos, input uwire [63:0] x, y);

logic [63:0] a1, b1, a2, b2;

uwire [63:0] p, s;

fpmul f1(p,a1,b1);

fpadd f2(s,a2,b2);

always @* begin

// Compute x^2.

a1 = x; b1 = x;

#1;

sos = p;

// Compute y^2.

a1 = y; b1 = y;

#1;

// Compute x^2 + y^2.

a2 = p; b2 = sos;

#1;

sos = s;

end

endmodule

Explain why the module is not synthesizable.

Fix the problem.

10

