
Name

Digital Design Using Verilog

EE 4702-1

Final Examination

9 May 2001 7:30-9:30 CDT

Alias

Problem 1 (15 pts)

Problem 2 (18 pts)

Problem 3 (17 pts)

Problem 4 (18 pts)

Problem 5 (12 pts)

Problem 6 (20 pts)

Exam Total (100 pts)

Good Luck!

Problem 1: The module below is in an explicit structural form.

(a) Re-write the module in behavioral form. The delays can be assumed to be pipeline delays.
(10 pts)

(b) What is the difference between pipeline and inertial delays? Which kind of delay is used in your
solution to the problem above? (5 pts)

module expl_str(x,y,a,b,c);

input a, b, c;

output x, y;

wire a, b, c, x, y;

wire na, nb, nc, t3, t5, t6;

not n1(na,a);

not n2(nb,b);

not n3(nc,c);

and #1 a1(t3,na,b,c);

and a2(t5,a,nb,c);

and a3(t6,a,b,nc);

or o1(x,t3,t6);

or #3 o2(y,a,t5);

endmodule

module behavioral(x,y,a,b,c);

input a, b, c;

output x, y;

// Solution here. Don’t forget types for ports!

endmodule

2

Problem 2: The module below sets output rot to the number of times that input a must be
rotated (end-around shifted) to obtain the value on input b, or to 32 if a is not a rotated version
of b.

(a) Write a testbench module that tests rots with input pairs a=0,b=0; a=0,b=1; a=0,b=2; and
a=0,b=3. (The rot output should be zero for the first pair and 32 for the others.) The testbench
should include an integer err and set it to the number of incorrect outputs.

It is important that the testbench makes correct use of ready and start. (Part of the problem
is determining just what is “correct use.”) The testbench should use ready rather than assumed
timing. Also, test only a single instance of rots and don’t forget the clock. (18 pts)

module rots(ready, rot, start, a, b, clk);

input a, b, start, clk; output ready, rot;

reg ready; wire [31:0] a, b;

reg [5:0] rot; wire start, clk;

reg [31:0] acpy;

initial rot = 0;

always @(posedge clk) begin

ready = 1; while (!start) @(posedge clk);

ready = 0; while (start) @(posedge clk);

rot = 0; acpy = a;

while (acpy != b && rot < 32) @(posedge clk) begin

acpy = { acpy[30:0], acpy[31] };

if (acpy == a) rot = 32; else rot = rot + 1;

end

end

endmodule

module testrot();

integer err;

endmodule

3

Problem 3: Convert the rots module (repeated below) to synthesizable Form 2 (edge-triggered
flip-flops). Do not change the ports or what it does. In particular, ready and start must be used
the same way. Ignore reset. (17 pts)

module rots(ready, rot, start, a, b, clk);

input a, b, start, clk; output ready, rot;

reg ready; wire [31:0] a, b;

reg [5:0] rot; wire start, clk;

reg [31:0] acpy;

initial rot = 0;

always @(posedge clk) begin

ready = 1; while (!start) @(posedge clk);

ready = 0; while (start) @(posedge clk);

rot = 0; acpy = a;

while (acpy != b && rot < 32) @(posedge clk) begin

acpy = { acpy[30:0], acpy[31] };

if (acpy == a) rot = 32; else rot = rot + 1;

end

end

endmodule

module rots(ready, rot, start, a, b, clk);

input a, b, start, clk;

output ready, rot; // Don’t forget port types and other declarations.

acpy = { acpy[30:0], acpy[31] };

if (acpy == a) rot = 32; else rot = rot + 1;

endmodule

4

Problem 4: Two synthesizable descriptions appear below.

(a) In what synthesizable form is the Verilog description below? (2 pts)

(b) Draw a schematic showing the approximate RTL-level description generated by a synthesis
program like Leonardo. (7 pts)

module whatsyna(x, y, z, a, b, op);

input a, b, op;

output x, y, z;

wire [7:0] a, b;

wire [1:0] op;

reg [7:0] x, y, z;

always @(op or a or b) begin

if (a == 0) y = b;

if (a < b) z = a; else z = b;

case (op)

0: x = a + b;

1: x = a;

2: x = b;

endcase

end

endmodule

5

Problem 4, continued:

(c) In what synthesizable form is the Verilog description below? (2 pts)

(d) Draw a schematic showing the approximate RTL-level description generated by a synthesis
program like Leonardo. (7 pts)

module whatsyn2(sum, nibbles, a, b, c);

input nibbles, a, b, c;

output sum;

wire [15:0] nibbles;

wire a, b, c;

reg [6:0] sum;

reg [15:0] n2;

reg last_c;

integer i;

always @(posedge a or negedge b)

if (!b) begin

sum = 0;

end else begin

if (c != last_c) begin

n2 = nibbles;

for (i=0; i < 4; i = i + 1) begin

sum = sum + n2[3:0];

n2 = n2 >> 4;

end

end

last_c = c;

end

endmodule

6

Problem 5: In the diagram below c, d, and identifiers starting with clk are all initialized to zero.
Complete the timing diagram. (12 pts)

Time 0 5 10 15 20 25 30 35 40 45 50

a

b

always @(posedge a) clk1 = !clk1

always @(a) @(b) clk2 = !clk2

always @(a or b) clk3 = !clk3

always @(a | b) clk4 = !clk4

always @(posedge (a | b)) clk5 = !clk5

always @(a) c <= a

always @(a) d <= #1 c

always @(a or c) clk6 = !clk6

always @(a or c) #0 clk7 = !clk7

always @(a or c) #2 clk8 = !clk8

7

Problem 6: Answer each question below.

(a) The code below, based on the Homework 3 solution, simulates properly before synthesis but in
the post-synthesis simulation the testbench reports an incorrect beep time.

What goes wrong? Fix the problem without modifying the code below the indicated line. Hint:
The beep can start (and stop) at a slightly different time than the code below. (5 pts)

module beepprob(beep, clk);

input clk;

output beep;

assign beep = | beep_timer;

// DO NOT MODIFY CODE BELOW THIS LINE.

always @(posedge clk) begin

// Lots of stuff;

if (beep_timer) beep_timer = beep_timer - 1;

end

endmodule

(b) Describe something that a parameter can be used for that an ordinary input port cannot and
something that an input port can be used for that a parameter cannot. (5 pts)

8

(c) What is the difference between case, casex, and casez? (5 pts)

(d) Explain how each of the three statements below behave differently with unknown values. In
particular, explain what has to be unknown and how the results of each statement is different.
(5 pts)

m1 = a > b ? c : d;

if (a > b) m2 = c; else m2 = d;

case (a > b)

1: m3 = c;

default: m3 = d;

endcase

9

