
Name Solution

Digital Design Using Verilog

EE 4702-1

Midterm Examination

5 April 2000 8:40-9:30 CDT

Alias always @(posedge)

Problem 1 (40 pts)

Problem 2 (60 pts)

Exam Total (100 pts)

Good Luck!

Problem 1: Complete the Verilog description (below) of a FIFO-like module which has a 3-bit
data input, in; a 7-bit output, out; 1-bit inputs inclk and outclk; and 1-bit outputs full and
empty. The module operates like a FIFO (first in, first out) except that the width of the data input
and output ports are different: it reads data 3 bits at a time (on a positive edge of inclk) and
outputs 7 bits at a time (consisting of data from two input words plus one bit of a third). Unless
the module has less than 3 bits of space left, on a positive edge of inclk the value on in is stored.
The oldest 7 bits stored by the module always appear on output out. On a positive edge of outclk
the oldest 7 bits are removed and the output displays the next 7 bits. Output full is 1 if the
module cannot accept another 3 bits of input and is 0 otherwise; output empty is 1 if the module
is empty and is 0 otherwise. Parameter storage is the total number of bits stored by the module.
An example of the module operating is shown in the timing diagram below. (40 pts)

0 10 20

inclk

in 001 010 011 100 101 110 111 000 001 010 011 100

outclk

out 0000000 0000001 0010001 1010001 0110001 1111101 0001000

full

empty

module width_change(out,full,empty,outclk,in,inclk);
input outclk, in, inclk;
output out, full, empty;

parameter storage = 20;

wire [6:0] out; // Can change to reg for solution.
wire [2:0] in;
wire inclk, outclk;
wire full, empty; // Can change to reg for solution.

reg [storage-1:0] sto; // Storage for data.
integer amt; // Number of occupied bits in sto.

// USE THE NEXT PAGE FOR THE SOLUTION.

endmodule // width_change

2

Problem 1, continued: The diagram and code from the previous page are repeated below.

0 10 20

inclk

in 001 010 011 100 101 110 111 000 001 010 011 100

outclk

out 0000000 0000001 0010001 1010001 0110001 1111101 0001000

full

empty

module width_change(out,full,empty,outclk,in,inclk);
input outclk, in, inclk;
output out, full, empty;

parameter storage = 20;

wire [6:0] out; // Can change to reg for solution.
wire [2:0] in;
wire inclk, outclk;
wire full, empty; // Can change to reg for solution.

reg [storage-1:0] sto; // Storage for data.
integer amt; // Number of occupied bits in sto.

// Solution goes here.
initial begin amt = 0; sto = 0; end

assign full = amt + 3 > storage;
assign empty = amt === 0;
assign out = sto[7-1:0];

always @(posedge outclk)
if(amt >= 7) begin

sto = sto >> 7;
amt = amt - 7;

end

always @(posedge inclk)
if(!full) begin

sto = sto | in << amt;
amt = amt + 3;

end

endmodule // width_change

3

Problem 2: Answer each question below.

(a) Describe something that a function can do (or be used for) that a task cannot. Describe
something that a task can do (or be used for) that a function cannot. (10 pts)

A function can be used in an expression (but a task cannot). A task can include delays, but a function cannot.

(b) Convert the following behavioral code to explicit structural code. (10 pts)

module btos(x, a, b);
input a, b;
output x;
wire a, b;
reg x;

always @(a or b) if(a) x = b; else x = ~b;

endmodule // btos

If you don’t see the logical function performed, draw a truth table. The function, x = a⊕ b, can be performed by
a primitive gate (xnor), a solution consisting of several other gates realizing the same function would also receive full
credit.

module explicit(x, a, b);
input a, b;
output x;
wire a, b;
wire x; // Wire, not reg.

xnor (x,a,b);

endmodule

4

(c) Show the changes (values and times) to a and b in the module below. (10 pts)

module assig();
reg [15:0] a, b;
initial

begin
a = 1;
b = 2;
#1;
a <= b;
b <= a;
#1;
a <= b + 10;
b <= #5 b + 20;
#1;
b = #1 3;
b <= 4;
b <= #2 5;
b <= #10 6;
b = 7;
#20;

end
endmodule

Note that b = #1 3; is a blocking assignment. The condition is evaluated immediately (since it’s 3 here evaluation
time doesn’t matter) and the assignment is done after the delay. Following statements are executed after the assignment.
The solution is plotted below.

0 10 20

a 1 2 11

b 2 1 4 5 21 6

5

(d) Show the changes (values and times) to x in the module below using the timing diagram
provided. (10 pts)

module events1();
wire a, b, c, d;
reg [2:0] x;
reg [3:0] i;
assign {d,c,b,a} = i;

initial begin
i = 0;
forever #10 i = i + 1;

end

always begin
#15;
@(a);
x = 1;
@(posedge a) x = 2;
@(a or b) x = 3;
@(a | b | c | d) x = 4;
wait(a | b) x = 5;
wait(a) x = 6;
wait(~a) x = 7;

end // always begin
endmodule // events1

An event control, @(foo), delays execution until foo changes. A wait statement, wait(foo), delays execution
until foo is nonzero (or true).

The solution appears below.

0 100 200 300

a

b

c

d

x 1 2 3 4 6 7 1 2 3

6

(e) Show the changes (values and times) to aa in the module below. (10 pts)

module d();
reg a;
wire aa;

and #(2,3) (aa,a,1);

initial begin
a = 0;
10;
a = 1;
10;
a = 0;
10;
a = 1;
1;
a = 0;
10;

end
endmodule // d

Solution:

0 10 20 30 40

a

aa

7

(f) Complete module after so that it does the same thing as before. All procedural code in module
after must go in the one initial process. The solution must use fork and join. Structural code
cannot be added. (10 pts)

module before(asum,bsum,out,a,ainp,b,binp,c);
output asum, bsum, out;
input a, ainp, b, binp, c;

reg [9:0] asum, bsum, out;
wire [9:0] ainp, binp;
wire a,b,c;

always @(a) asum = asum + ainp;

always @(b) bsum = bsum + binp;

always @(posedge c) out = asum + bsum;

endmodule

module after(asum,bsum,out,a,ainp,b,binp,c);
output asum, bsum, out;
input a, ainp, b, binp, c;

reg [9:0] asum, bsum, out;
wire [9:0] ainp, binp;
wire a,b,c;

// ALL code must go in the initial process below.
initial begin

// Solution:
fork

forever @(a) asum = asum + ainp;
forever @(b) bsum = bsum + binp;
forever @(posedge c) out = asum + bsum;

join

end // initial

endmodule

8

