
Name

Digital Design Using Verilog

EE 4702-1

Final Examination

8 May 2000, 7:30–9:30 CDT

Alias

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (20 pts)

Problem 5 (20 pts)

Exam Total (100 pts)

Good Luck!

Problem 1: The modules below are supposed to describe combinational logic that rearranges bits.
The output of module rearrange, below, is a rearranged version of its input a; input op determines
how the bits are rearranged. Module rerearrange uses two instances of rearrange to reverse and
then left shift its inputs. Unfortunately, the modules are not quite ready for tape out because both
contain errors.

Find and fix the following kinds of errors. (Points may be deducted if correct Verilog is identified
as having errors.) (20 pts)

• A: One compile error. (Modelsim will not compile it.)

• B: One load error or warning. (Modelsim will compile it but will issue a warning or
error message when loading it.)

• C: Three errors that result in incorrect output. The code will simulate but the output,
if any, will be incorrect.

Lines with the comment // Okay do not have errors. None of the errors are typographical or are
due to syntactic minutiæ such as missing semicolons.

module rerearrange(y,a);
input a; output y;
wire [7:0] a; reg [7:0] y; wire [0:7] temp;

wire operation;
assign operation = e1.op_reverse;
rearrange e1(temp,a,operation);

assign operation = e1.op_left_shift;
rearrange e2(y,temp,operation);

endmodule

module rearrange(x,a,op);
input a, op; output x;
wire [7:0] a; wire [1:0] op;
reg [7:0] x; reg [2:0] ptr, ptr_plus_one;

parameter op_reverse = 0; // Reverse order of bits. // Okay
parameter op_identity = 1; // No change. // Okay
parameter op_left_shift = 2; // Circular (end-around) left shift. // Okay
parameter op_right_shift = 3; // Circular (end-around) right shift.// Okay

always @(a) for(ptr=0; ptr<8; ptr=ptr+1) begin
ptr_plus_one = ptr + 1; // Okay
case(op)
op_reverse: x[ptr] = a[7-ptr]; // Okay
op_identity: x[ptr] = a[ptr]; // Okay
op_right_shift: x[ptr] = a[ptr_plus_one]; // Okay
op_left_shift: x[ptr_plus_one] = a[ptr]; // Okay

endcase
end

endmodule

2

Problem 2: Using the grid show the register values for the first 40 time units of execution of the
module below. (20 pts)

module clocks();
reg clk, clk2, clk3, clk4, clk5, clk6, clk7, clk8;
initial begin

clk = 0; clk2 = 0; clk3 = 0; clk4 = 0;
clk5 = 0; clk6 = 0; clk7 = 0; clk8 = 0;

end

always #8 clk = ~clk;
always @(clk) #4 clk2 = ~clk2;
always @(clk) clk3 <= #10 clk;
always @(posedge clk) clk4 = ~clk4;
always #2 forever #8 clk5 = ~clk5;
always wait(clk) #3 clk6 = ~clk6;
always @(clk | clk4) clk7 = ~clk7;
always @(clk or clk4) clk8 = ~clk8;

endmodule

Time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

clk

clk2

clk3

clk4

clk5

clk6

clk7

clk8

3

Problem 3: Draw a schematic of the hardware Leonardo will synthesize for the following Verilog
code examples. These should approximate the RTL schematic, showing the hardware before opti-
mization and technology mapping. If flip flops are used, indicate if they are level triggered or edge
triggered. Otherwise, don’t worry about using the precisely correct gate or symbol, as long as it’s
functionally correct.

(a) Show an approximate RTL schematic for the module below. What form is the description in?
Hint: think about what form the code is in. (6 pts)

module mod_a(x,y,a,b,c);
input a,b,c;
output x,y;
wire [7:0] b, c;
reg [8:0] x, y;

always @(a or b or c) begin
if(a) begin

x = b + c;
y = b - c;

end else begin
x = b - c;

end
end

endmodule

4

Problem 3, continued: (b) Show an approximate RTL schematic for the module below. What
form is the description in? Hint: think about what form the code is in. (6 pts)

module mod_b(x,y,d,e,f,g,h);
input d,e,f,g,h;
output x,y;
reg x,y;

always @(posedge d or negedge e or posedge f)
if(d) begin

x = 0;
y = 1;

end else if (f) begin
x = 1;

end else begin
if(g) x = h;
y = h;

end

endmodule

5

Problem 3, continued: (c) Show an approximate RTL schematic for the module below. Assume
that the synthesis program will not infer that this module performs magnitude comparison. Use

symbols < and > for bit comparison. (8 pts)

module compare(gt, lt, a, b);
input a, b;
output gt, lt;
wire [2:0] a, b;
reg gt, lt;
integer i;

always @(a or b) begin
gt = 0; lt = 0;
for(i=2; i>=0; i=i-1) if(!gt && !lt) begin

if(a[i] < b[i]) lt = 1;
if(a[i] > b[i]) gt = 1;

end
end

endmodule

6

Problem 4: The incomplete code below, compare_ism, is for a magnitude comparison module
(similar to the one in the previous problem, except it’s sequential).

When input start is set to 1, output valid goes to zero and the module computes lt and gt.
When lt and gt are set to their proper values valid is set to one. The module is to compare one
bit position per cycle of input clk. Output valid should go to one as soon as possible.

Complete the module so that it is in the form of an implicit state machine, synthesizable by
Leonardo. The solution can be based on the combinational module compare, below. Don’t forget
signals start and valid. (20 pts) Hint: The solution is very similar to the combinational module.
For partial credit ignore synthesizability but follow other specifications.

module compare(gt, lt, a, b); // Synthesizable combinational implementation.
input a, b; output gt, lt;
wire [31:0] a, b;
reg gt, lt; integer i;

always @(a or b) begin
gt = 0; lt = 0;
for(i=31; i>=0; i=i-1) if(!gt && !lt) begin

if(a[i] < b[i]) lt = 1;
if(a[i] > b[i]) gt = 1;

end
end

endmodule

// Implicit state machine implementation.
module compare_ism(gt, lt, valid, a, b, start, clk);

input a, b, start, clk; output gt, lt, valid;
wire [31:0] a, b; reg gt, lt, valid;
wire start, clk; integer i;

if(a[i] < b[i]) lt = 1; // Part of solution.
if(a[i] > b[i]) gt = 1;

endmodule

7

Problem 5: Answer each question below.

(a) Complete the module below so that it will stop simulation (using the system task $stop) if there
is no change in signal heartbeat for 1000 simulator time units. There might be many changes
in heartbeat, but the first time heartbeat remains unchanged for 1000 simulator time units
simulation should be stopped. Hint: use a fork. Also, the answer is short. (5 pts)

module watchdog(heartbeat);
input heartbeat;
wire heartbeat;

endmodule // watchdog

(b) What is a critical path? At what point in the design flow can one first find out about critical
paths? (5 pts)

8

(c) Provide an example case statement in which the directive exemplar case_parallel is needed.
What is its effect? (5 pts)

(d) The module below is supposed to zero the middle 3 bits of its input. It’s rejected by the compiler
(the ”b=” line), identify and fix the problem. (5 pts)

module whatswrong(a,b);
input a; output b;
wire [8:0] a; wire [8:0] b;

assign b = {a[8:6],0,a[2:0]};

endmodule

9

