
Data Prefetch Mechanisms

Department of Electrical & Computer Engineering

University of Minnesota

200 Union St. SE

Minneapolis, MN 55455

ABSTRACT

The expanding gap between microprocessor and DRAM performance has necessitated
the use of increasingly aggressive techniques designed to reduce or hide the latency of
main memory accesses. Although large cache hierarchies have proven to be effective in
reducing this latency for the most frequently used data, it is still not uncommon for
scientific programs to spend more than half their run times stalled on memory requests.
Data prefetching has been proposed as a technique for hiding the access latency of data
referencing patterns that defeat caching strategies. Rather than waiting for a cache miss
to initiate a memory fetch, data prefetching anticipates such misses and issues a fetch to
the memory system in advance of the actual memory reference. To be effective,
prefetching must be implemented in such a way that prefetches are timely, useful, and
introduce little overhead. Secondary effects, such as cache pollution and increased
memory bandwidth requirements, must also be taken into consideration. Despite these
obstacles, prefetching has the potential to significantly improve overall program
execution time by overlapping computation with memory accesses. Prefetching
strategies are diverse and no single strategy has yet been proposed which provides
optimal performance. The following survey examines several alternative approaches
and discusses the design tradeoffs involved when implementing a data prefetch strategy.

General Terms

Design, Performance

Categories and Subject Descriptors

B.3.2 Hardware, Memory Structures, Design Styles, Cache Memories

Keywords and Phrases

Prefetching, Memory Latency

Steven P. VanderWiel David J. Lilja

svw@ece.umn.edu lilja@ece.umn.edu

2

1. Introduction
By any metric, microprocessor performance has increased at a dramatic rate over the past decade.
This trend has been sustained by continued architectural innovations and advances in
microprocessor fabrication technology. In contrast, main memory dynamic RAM (DRAM)
performance has increased at a much more leisurely rate, as shown in Figure 1. This expanding
gap between microprocessor and DRAM performance has necessitated the use of increasingly
aggressive techniques designed to reduce or hide the large latency of memory accesses [16].

Chief among the latency reducing techniques is the use of cache memory hierarchies [34]. The
static RAM (SRAM) memories used in caches have managed to keep pace with processor memory
request rates but continue to be too expensive for a main store technology. Although the use of
large cache hierarchies has proven to be effective in reducing the average memory access penalty
for programs that show a high degree of locality in their addressing patterns, it is still not
uncommon for scientific and other data-intensive programs to spend more than half their run times
stalled on memory requests [25]. The large, dense matrix operations that form the basis of many
such applications typically exhibit little locality and therefore can defeat caching strategies.

The poor cache utilization of these applications is partially a result of the “on demand” memory
fetch policy of most caches. This policy fetches data into the cache from main memory only after
the processor has requested a word and found it absent from the cache. The situation is illustrated
in Figure 2a where computation, including memory references satisfied within the cache hierarchy,
are represented by the upper time line while main memory access time is represented by the lower
time line. In this figure, the data blocks associated with memory references r1, r2, and r3 are not
found in the cache hierarchy and must therefore be fetched from main memory. Assuming the
referenced data word is needed immediately, the processor will be stalled while it waits for the
corresponding cache block to be fetched. Once the data returns from main memory it is cached and
forwarded to the processor where computation may again proceed.

Year

P
er

fo
rm

an
ce

1

10

100

1000

88 89 90 91 92 93 94 95 96

System

DRAM

Figure 1. System and DRAM performance since 1988. System performance is measured by
SPECfp92 and DRAM performance by row access times. All values are normalized to their
1988 equivalents (source: Internet SPECtable, ftp://ftp.cs.toronto.edu/pub/jdd/spectable).

3

Note that this fetch policy will always result in a cache miss for the first access to a cache block
since only previously accessed data are stored in the cache. Such cache misses are known as cold
start or compulsory misses. Also, if the referenced data is part of a large array operation, it is
likely that the data will be replaced after its use to make room for new array elements being
streamed into the cache. When the same data block is needed later, the processor must again bring
it in from main memory incurring the full main memory access latency. This is called a capacity
miss.

Many of these cache misses can be avoided if we augment the demand fetch policy of the cache
with the addition of a data prefetch operation. Rather than waiting for a cache miss to perform a
memory fetch, data prefetching anticipates such misses and issues a fetch to the memory system in
advance of the actual memory reference. This prefetch proceeds in parallel with processor
computation, allowing the memory system time to transfer the desired data from main memory to
the cache. Ideally, the prefetch will complete just in time for the processor to access the needed
data in the cache without stalling the processor.

An increasingly common mechanism for initiating a data prefetch is an explicit fetch instruction
issued by the processor. At a minimum, a fetch specifies the address of a data word to be
brought into cache space. When the fetch instruction is executed, this address is simply passed
on to the memory system without forcing the processor to wait for a response. The cache responds
to the fetch in a manner similar to an ordinary load instruction with the exception that the

�����
�����
�����

�����
�����
�����

���
���
���

�����
�����
�����

�����
�����
�����

�����
�����
�����

403020100

(a)

(b)

(c)

Time

�������
�������
�������

�
�
�

Computation Memory Acesss Cache Hit Cache Miss Prefetch

r1 r2 r3

r1 r2 r3

r1 r2 r3

Figure 2. Execution diagram assuming a) no prefetching, b) perfect prefetching and c)
degraded prefetching.

4

referenced word is not forwarded to the processor after it has been cached. Figure 2b shows how
prefetching can be used to improve the execution time of the demand fetch case given in Figure 2a.
Here, the latency of main memory accesses is hidden by overlapping computation with memory
accesses resulting in a reduction in overall run time. This figure represents the ideal case when
prefetched data arrives just as it is requested by the processor.

A less optimistic situation is depicted in Figure 2c. In this figure, the prefetches for references r1
and r2 are issued too late to avoid processor stalls although the data for r2 is fetched early enough
to realize some benefit. Note that the data for r3 arrives early enough to hide all of the memory
latency but must be held in the processor cache for some period of time before it is used by the
processor. During this time, the prefetched data are exposed to the cache replacement policy and
may be evicted from the cache before use. When this occurs, the prefetch is said to be useless
because no performance benefit is derived from fetching the block early.

A prematurely prefetched block may also displace data in the cache that is currently in use by the
processor, resulting in what is known as cache pollution. Note that this effect should be
distinguished from normal cache replacement misses. A prefetch that causes a miss in the cache
that would not have occurred if prefetching was not in use is defined as cache pollution. If,
however, a prefetched block displaces a cache block which is referenced after the prefetched block
has been used, this is an ordinary replacement miss since the resulting cache miss would have
occurred with or without prefetching.

A more subtle side effect of prefetching occurs in the memory system. Note that in Figure 2a the
three memory requests occur within the first 31 time units of program startup whereas in Figure
2b, these requests are compressed into a period of 19 time units. By removing processor stall
cycles, prefetching effectively increases the frequency of memory requests issued by the processor.
Memory systems must be designed to match this higher bandwidth to avoid becoming saturated
and nullifying the benefits of prefetching. This is can be particularly true for multiprocessors where
bus utilization is typically higher than single processor systems.

It is also interesting to note that software prefetching can achieve a reduction in run time despite
adding instructions into the execution stream. In Figure 3, the memory effects from Figure 2 are
ignored and only the computational components of the run time are shown. Here, it can be seen
that the three prefetch instructions actually increase the amount of work done by the processor.

Several hardware-based prefetching techniques have also been proposed which do not require the
use of explicit fetch instructions. These techniques employ special hardware which monitors the
processor in an attempt to infer prefetching opportunities. Although hardware prefetching incurs
no instruction overhead, it often generates more unnecessary prefetches than software prefetching.
Unnecessary prefetches are more common in hardware schemes because they speculate on future
memory accesses without the benefit of compile-time information. If this speculation is incorrect,
cache blocks that are not actually needed will be brought into the cache. Although unnecessary
prefetches do not affect correct program behavior, they can result in cache pollution and will

�����
�����
�����

�����
�����
�����

���
���
���

r1 r2 r3

r1 r2 r3

Prefetch Overhead

No Prefetching

Prefetching

Figure 3. Software prefetching overhead.

5

consume memory bandwidth.

To be effective, data prefetching must be implemented in such a way that prefetches are timely,
useful, and introduce little overhead. Secondary effects in the memory system must also be taken
into consideration when designing a system that employs a prefetch strategy. Despite these
obstacles, data prefetching has the potential to significantly improve overall program execution
time by overlapping computation with memory accesses. Prefetching strategies are diverse and no
single strategy has yet been proposed which provides optimal performance. In the following
sections, alternative approaches to prefetching will be examined by comparing their relative
strengths and weaknesses.

2. Background
Prefetching, in some form, has existed since the mid-sixties. Early studies [1] of cache design
recognized the benefits of fetching multiple words from main memory into the cache. In effect,
such block memory transfers prefetch the words surrounding the current reference in hope of
taking advantage of the spatial locality of memory references. Hardware prefetching of separate
cache blocks was later implemented in the IBM 370/168 and Amdahl 470V [33]. Software
techniques are more recent. Smith first alluded to this idea in his survey of cache memories [34]
but at that time doubted its usefulness. Later, Porterfield [29] proposed the idea of a “cache load
instruction” with several RISC implementations following shortly thereafter.

Prefetching is not restricted to fetching data from main memory into a processor cache. Rather, it
is a generally applicable technique for moving memory objects up in the memory hierarchy before
they are actually needed by the processor. Prefetching mechanisms for instructions and file systems
are commonly used to prevent processor stalls, for example [38,28]. For the sake of brevity, only
techniques that apply to data objects residing in memory will be considered here.

Non-blocking load instructions share many similarities with data prefetching. Like prefetches,
these instructions are issued in advance of the data’s actual use to take advantage of the parallelism
between the processor and memory subsystem. Rather than loading data into the cache, however,
the specified word is placed directly into a processor register. Non-blocking loads are an example
of a binding prefetch, so named because the value of the prefetched variable is bound to a named
location (a processor register, in this case) at the time the prefetch is issued. Although non-
blocking loads will not be discussed further here, other forms of binding prefetches will be
examined.

Data prefetching has received considerable attention in the literature as a potential means of
boosting performance in multiprocessor systems. This interest stems from a desire to reduce the
particularly high memory latencies often found in such systems. Memory delays tend to be high in
multiprocessors due to added contention for shared resources such as a shared bus and memory
modules in a symmetric multiprocessor. Memory delays are even more pronounced in distributed-
memory multiprocessors where memory requests may need to be satisfied across an interconnection
network. By masking some or all of these significant memory latencies, prefetching can be an
effective means of speeding up multiprocessor applications.

Due to this emphasis on prefetching in multiprocessor systems, many of the prefetching
mechanisms discussed below have been studied either largely or exclusively in this context.
Because several of these mechanisms may also be effective in single processor systems,
multiprocessor prefetching is treated as a separate topic only when the prefetch mechanism is
inherent to such systems.

6

3. Software Data Prefetching
Most contemporary microprocessors support some form of fetch instruction which can be used
to implement prefetching [3,31,37]. The implementation of a fetch can be as simple as a load
into a processor register that has been hardwired to zero. Slightly more sophisticated
implementations provide hints to the memory system as to how the prefetched block will be used.
Such information may be useful in multiprocessors where data can be prefetched in different
sharing states, for example.

Although particular implementations will vary, all fetch instructions share some common
characteristics. Fetches are non-blocking memory operations and therefore require a lockup-free
cache [21] that allows prefetches to bypass other outstanding memory operations in the cache.
Prefetches are typically implemented in such a way that fetch instructions cannot cause
exceptions. Exceptions are suppressed for prefetches to insure that they remain an optional
optimization feature that does not affect program correctness or initiate large and potentially
unnecessary overhead, such as page faults or other memory exceptions.

The hardware required to implement software prefetching is modest compared to other prefetching
strategies. Most of the complexity of this approach lies in the judicious placement of fetch
instructions within the target application. The task of choosing where in the program to place a
fetch instruction relative to the matching load or store instruction is known as prefetch
scheduling.

In practice, it is not possible to precisely predict when to schedule a prefetch so that data arrives in
the cache at the moment it will be requested by the processor, as was the case in Figure 2b. The
execution time between the prefetch and the matching memory reference may vary, as will memory
latencies. These uncertainties are not predictable at compile time and therefore require careful
consideration when scheduling prefetch instructions in a program.

Fetch instructions may be added by the programmer or by the compiler during an optimization
pass. Unlike many optimizations which occur too frequently in a program or are too tedious to
implement by hand, prefetch scheduling can often be done effectively by the programmer. Studies
have indicated that adding just a few prefetch directives to a program can substantially improve
performance [24]. However, if programming effort is to be kept at a minimum, or if the program
contains many prefetching opportunities, compiler support may be required.

Whether hand-coded or automated by a compiler, prefetching is most often used within loops
responsible for large array calculations. Such loops provide excellent prefetching opportunities
because they are common in scientific codes, exhibit poor cache utilization and often have
predictable array referencing patterns. By establishing these patterns at compile-time, fetch
instructions can be placed inside loop bodies so that data for a future loop iteration can be
prefetched during the current iteration.

As an example of how loop-based prefetching may be used, consider the code segment shown in
Figure 4a. This loop calculates the inner product of two vectors, a and b, in a manner similar to
the innermost loop of a matrix multiplication calculation. If we assume a four-word cache block,
this code segment will cause a cache miss every fourth iteration. We can attempt to avoid these
cache misses by adding the prefetch directives shown in Figure 4b. Note that this figure is a source
code representation of the assembly code that would be generated by the compiler.

7

This simple approach to prefetching suffers from several problems. First, we need not prefetch
every iteration of this loop since each fetch actually brings four words (one cache block) into the
cache. Although the extra prefetch operations are not illegal, they are unnecessary and will
degrade performance. Assuming a and b are cache block aligned, prefetching should be done only
on every fourth iteration. One solution to this problem is to surround the fetch directives with
an if condition that tests when i modulo 4 = 0 is true. The overhead of such an explicit
prefetch predicate, however, would likely offset the benefits of prefetching and therefore should be
avoided. A better solution is to unroll the loop by a factor of r where r is equal to the number of
words to be prefetched per cache block. As shown in Figure 4c, unrolling a loop involves
replicating the loop body r times and increasing the loop stride to r. Note that the fetch

for (i = 0; i < N; i++)
ip = ip + a[i]*b[i];

for (i = 0; i < N; i++){
fetch(&a[i+1]);
fetch(&b[i+1]);
ip = ip + a[i]*b[i];

}

for (i = 0; i < N; i+=4){
fetch(&a[i+4]);
fetch(&b[i+4]);
ip = ip + a[i]*b[i];
ip = ip + a[i+1]*b[i+1];
ip = ip + a[i+2]*b[i+2];
ip = ip + a[i+3]*b[i+3];

}

fetch(&ip);
fetch(&a[0]);
fetch(&b[0]);

for (i = 0; i < N-4; i+=4){
fetch(&a[i+4]);
fetch(&b[i+4]);
ip = ip + a[i] *b[i];
ip = ip + a[i+1]*b[i+1];
ip = ip + a[i+2]*b[i+2];
ip = ip + a[i+3]*b[i+3];

}
for (; i < N; i++)

ip = ip + a[i]*b[i];

(a)

(b)

(c)

(d)

Figure 4. Inner product calculation using a) no prefetching, b) simple prefetching, c)
prefetching with loop unrolling and d) software pipelining.

8

directives are not replicated and the index value used to calculate the prefetch address is changed
from i+1 to i+r.

The code segment given in Figure 4c removes most cache misses and unnecessary prefetches but
further improvements are possible. Note that cache misses will occur during the first iteration of
the loop since prefetches are never issued for the initial iteration. Unnecessary prefetches will occur
in the last iteration of the unrolled loop where the fetch commands attempt to access data past
the loop index boundary. Both of the above problems can be remedied by using software pipelining
techniques as shown in Figure 4d. In this figure, we have extracted select code segments out of the
loop body and placed them on either side of the original loop. Fetch statements have been
prepended to the main loop to prefetch data for the first iteration of the main loop, including ip.
This segment of code is referred to as the loop prolog. An epilog is added to the end of the main
loop to execute the final inner product computations without initiating any unnecessary prefetch
instructions.

The code given in Figure 4 is said to cover all loop references because each reference is preceded
by a matching prefetch. However, one final refinement may be necessary to make these prefetches
effective. The examples in Figure 4 have been written with the implicit assumption that prefetching
one iteration ahead of the data’s actual use is sufficient to hide the latency of main memory
accesses. This may not be the case. Although early studies [4] were based on this assumption,
Klaiber and Levy [20] recognized that this was not a sufficiently general solution. When loops
contain small computational bodies, it may be necessary to initiate prefetches δ iterations before
the data is referenced. Here, δ is known as the prefetch distance and is expressed in units of loop
iterations. Mowry, et. al. [25] later simplified the computation of δ to

δ =

l

s

where l is the average memory latency, measured in processor cycles, and s is the estimated cycle
time of the shortest possible execution path through one loop iteration, including the prefetch
overhead. By choosing the shortest execution path through one loop iteration and using the ceiling
operator, this calculation is designed to err on the conservative side and thus increase the likelihood
that prefetched data will be cached before it is requested by the processor.

Returning to the main loop in Figure 4d, let us assume an average miss latency of 100 processor
cycles and a loop iteration time of 45 cycles so that δ = 3. Figure 5 shows the final version of the
inner product loop which has been altered to handle a prefetch distance of three. Note that the
prolog has been expanded to include a loop which prefetches several cache blocks for the initial
three iterations of the main loop. Also, the main loop has been shortened to stop prefetching three
iterations before the end of the computation. No changes are necessary for the epilog which carries
out the remaining loop iterations with no prefetching.

The loop transformations outlined above are fairly mechanical and, with some refinements, can be
applied recursively to nested loops. Sophisticated compiler algorithms based on this approach
have been developed to automatically add fetch instructions during an optimization pass of a
compiler [25], with varying degrees of success. Bernstein, et al. [3] measured the run-times of
twelve scientific benchmarks both with and without the use of prefetching on a PowerPC 601-
based system. Prefetching typically improved run-times by less than 12% although one benchmark
ran 22% faster and three others actually ran slightly slower due to prefetch instruction overhead.
Santhanam, et al. [31] found that six of the ten SPECfp95 benchmark programs ran between 26%
and 98% faster on a PA8000-based system when prefetching was enabled. Three of the four

9

remaining SPECfp95 programs showed less than a 7% improvement in run-time and one program
was slowed down by 12%.

Because a compiler must be able to reliably predict memory access patterns, prefetching is
normally restricted to loops containing array accesses whose indices are linear functions of the loop
indices. Such loops are relatively common in scientific codes but far less so in general applications.
Attempts at establishing similar software prefetching strategies for these applications are hampered
by their irregular referencing patterns [9,22,23]. Given the complex control structures typical of
general applications, there is often a limited window in which to reliably predict when a particular
datum will be accessed. Moreover, once a cache block has been accessed, there is less of a chance
that several successive cache blocks will also be requested when data structures such as graphs and
linked lists are used. Finally, the comparatively high temporal locality of many general
applications often result in high cache utilization thereby diminishing the benefit of prefetching.

Even when restricted to well-conformed looping structures, the use of explicit fetch instructions
exacts a performance penalty that must be considered when using software prefetching. Fetch
instructions add processor overhead not only because they require extra execution cycles but also
because the fetch source addresses must be calculated and stored in the processor. Ideally, this
prefetch address should be retained so that it need not be recalculated for the matching load or
store instruction. By allocating and retaining register space for the prefetch addresses, however,
the compiler will have less register space to allocate to other active variables. The addition of
fetch instructions is therefore said to increase register pressure which, in turn, may result in
additional spill code to manage variables “spilled” out to main memory due to insufficient register
space. The problem is exacerbated when the prefetch distance is greater than one since this implies
either maintaining δ address registers to hold multiple prefetch addresses or storing these addresses
in memory if the required number of address registers are not available.

Comparing the transformed loop in Figure 5 to the original loop, it can be seen that software
prefetching also results in significant code expansion which, in turn, may degrade instruction cache
performance. Finally, because software prefetching is done statically, it is unable to detect when a
prefetched block has been prematurely evicted and needs to be re-fetched.

fetch(&ip);
for (i = 0; i < 12; i += 4){

fetch(&a[i]);
fetch(&b[i]);

}
for (i = 0; i < N-12; i += 4){

fetch(&a[i+12]);
fetch(&b[i+12]);
ip = ip + a[i] *b[i];
ip = ip + a[i+1]*b[i+1];
ip = ip + a[i+2]*b[i+2];
ip = ip + a[i+3]*b[i+3];

}
for (; i < N; i++)

ip = ip + a[i]*b[i];

prolog -prefetching only

main loop -prefetching
and computation

epilog - computation only

Figure 5. Final inner product loop transformation.

10

4. Hardware Data Prefetching
Several hardware prefetching schemes have been proposed which add prefetching capabilities to a
system without the need for programmer or compiler intervention. No changes to existing
executables are necessary so instruction overhead is completely eliminated. Hardware prefetching
also can take advantage of run-time information to potentially make prefetching more effective.

4.1 Sequential prefetching
Most (but not all) prefetching schemes are designed to fetch data from main memory into the
processor cache in units of cache blocks. It should be noted, however, that multiple word cache
blocks are themselves a form of data prefetching. By grouping consecutive memory words into
single units, caches exploit the principle of spatial locality to implicitly prefetch data that is likely
to be referenced in the near future.

The degree to which large cache blocks can be effective in prefetching data is limited by the
ensuing cache pollution effects. That is, as the cache block size increases, so does the amount of
potentially useful data displaced from the cache to make room for the new block. In shared-
memory multiprocessors with private caches, large cache blocks may also cause false sharing
which occurs when two or more processors wish to access different words within the same cache
block and at least one of the accesses is a store. Although the accesses are logically applied to
separate words, the cache hardware is unable to make this distinction since it operates only on
whole cache blocks. The accesses are therefore treated as operations applied to a single object and
cache coherence traffic is generated to ensure that the changes made to a block by a store
operation are seen by all processors caching the block. In the case of false sharing, this traffic is
unnecessary since only the processor executing the store references the word being written.
Increasing the cache block size increases the likelihood of two processors sharing data from the
same block and hence false sharing is more likely to arise.

Sequential prefetching can take advantage of spatial locality without introducing some of the
problems associated with large cache blocks. The simplest sequential prefetching schemes are
variations upon the one block lookahead (OBL) approach which initiates a prefetch for block b+1
when block b is accessed. This differs from simply doubling the block size in that the prefetched
blocks are treated separately with regard to the cache replacement and coherence policies. For
example, a large block may contain one word which is frequently referenced and several other
words which are not in use. Assuming an LRU replacement policy, the entire block will be
retained even though only a portion of the block’s data is actually in use. If this large block were
replaced with two smaller blocks, one of them could be evicted to make room for more active data.
Similarly, the use of smaller cache blocks reduces the probability that false sharing will occur.

OBL implementations differ depending on what type of access to block b initiates the prefetch of
b+1. Smith [34] summarizes several of these approaches of which the prefetch-on-miss and
tagged prefetch algorithms will be discussed here. The prefetch-on-miss algorithm simply initiates
a prefetch for block b+1 whenever an access for block b results in a cache miss. If b+1 is already
cached, no memory access is initiated. The tagged prefetch algorithm associates a tag bit with
every memory block. This bit is used to detect when a block is demand-fetched or a prefetched
block is referenced for the first time. In either of these cases, the next sequential block is fetched.

Smith found that tagged prefetching reduced cache miss ratios in a unified (both instruction and
data) cache by between 50% and 90% for a set of trace-driven simulations. Prefetch-on-miss was
less than half as effective as tagged prefetching in reducing miss ratios. The reason prefetch-on-
miss is less effective is illustrated in Figure 6 where the behavior of each algorithm when accessing

11

three contiguous blocks is shown. Here, it can be seen that a strictly sequential access pattern will
result in a cache miss for every other cache block when the prefetch-on-miss algorithm is used but
this same access pattern results in only one cache miss when employing a tagged prefetch
algorithm.

The HP PA7200 [5] serves as an example of a contemporary microprocessor that uses OBL
prefetch hardware. The PA7200 implements a tagged prefetch scheme using either a directed or an
undirected mode. In the undirected mode, the next sequential line is prefetched. In the directed
mode, the prefetch direction (forward or backward) and distance can be determined by the
pre/post-increment amount encoded in the load or store instructions. That is, when the
contents of an address register are auto-incremented, the cache block associated with a new address
is prefetched. Compared to a base case with no prefetching, the PA7200 achieved run-time
improvements in the range of 0% to 80% for 10 SPECfp95 benchmark programs [35]. Although
performance was found to be application-dependent, all but two of the programs ran more than
20% faster when prefetching was enabled.

Note that one shortcoming of the OBL schemes is that the prefetch may not be initiated far enough
in advance of the actual use to avoid a processor memory stall. A sequential access stream
resulting from a tight loop, for example, may not allow sufficient lead time between the use of
block b and the request for block b+1. To solve this problem, it is possible to increase the number
of blocks prefetched after a demand fetch from one to K, where K is known as the degree of
prefetching. Prefetching K > 1 subsequent blocks aids the memory system in staying ahead of

demand-fetched

prefetched

demand-fetched

prefetched

demand-fetched

prefetched

demand-fetched

prefetched

0 demand-fetched

1 prefetched

0 demand-fetched

0 prefetched

1 prefetched0

0 demand-fetched

0 prefetched

1 prefetched

0 prefetched

0 0

0 demand-fetched

1 prefetched

0 demand-fetched

0 prefetched

1 prefetched

0 demand-fetched

0 prefetched

1 prefetched

0 prefetched

0

1 prefetched

0 0

1 prefetched

1 prefetched

0 0 0

(c)

(a)

(b)

Figure 6. Three forms of sequential prefetching: a) Prefetch on miss, b) tagged prefetch and
c) sequential prefetching with K = 2.

12

rapid processor requests for sequential data blocks. As each prefetched block, b, is accessed for
the first time, the cache is interrogated to check if blocks b+1, ... b+K are present in the cache and,
if not, the missing blocks are fetched from memory. Note that when K = 1 this scheme is identical
to tagged OBL prefetching.

Although increasing the degree of prefetching reduces miss rates in sections of code that show a
high degree of spatial locality, additional traffic and cache pollution are generated by sequential
prefetching during program phases that show little spatial locality. Przybylski [30] found that this
overhead tends to make sequential prefetching unfeasible for values of K larger than one.

Dahlgren and Stenström [11] proposed an adaptive sequential prefetching policy that allows the
value of K to vary during program execution in such a way that K is matched to the degree of
spatial locality exhibited by the program at a particular point in time. To do this, a prefetch
efficiency metric is periodically calculated by the cache as an indication of the current spatial
locality characteristics of the program. Prefetch efficiency is defined to be the ratio of useful
prefetches to total prefetches where a useful prefetch occurs whenever a prefetched block results in
a cache hit. The value of K is initialized to one, incremented whenever the prefetch efficiency
exceeds a predetermined upper threshold and decremented whenever the efficiency drops below a
lower threshold as shown in Figure 7. Note that if K is reduced to zero, prefetching is effectively
disabled. At this point, the prefetch hardware begins to monitor how often a cache miss to block b
occurs while block b-1 is cached and restarts prefetching if the respective ratio of these two
numbers exceeds the lower threshold of the prefetch efficiency.

Simulations of a shared memory multiprocessor found that adaptive prefetching could achieve
appreciable reductions in cache miss ratios over tagged prefetching. However, simulated run-time
comparisons showed only slight differences between the two schemes. The lower miss ratio of
adaptive sequential prefetching was found to be partially nullified by the associated overhead of
increased memory traffic and contention.

Jouppi [19] proposed an approach where K prefetched blocks are brought into a FIFO stream
buffer before being brought into the cache. As each buffer entry is referenced, it is brought into the
cache while the remaining blocks are moved up in the queue and a new block is prefetched into the
tail position. Note that since prefetched data are not placed directly into the cache, this scheme
avoids any cache pollution. However, if a miss occurs in the cache and the desired block is also not
found at the head of the stream buffer, the buffer is flushed. Therefore, prefetched blocks must be
accessed in the order they are brought into the buffer for stream buffers to provide a performance
benefit.

K--

K++

time

upper threshold

lower threshold

prefetch
efficiency

Figure 7. Sequential adaptive prefetching

13

Palacharla and Kessler [27] studied stream buffers as a replacement for a secondary cache. When
a primary cache miss occurs, one of several stream buffers is allocated to service the new reference
stream. Stream buffers are allocated in LRU order and a newly allocated buffer immediately
fetches the next K blocks following the missed block into the buffer. Palacharla and Kessler found
that eight stream buffers and K = 2 provided adequate performance in their simulation study. With
these parameters, stream buffer hit rates (the percentage of primary cache misses that are satisfied
by the stream buffers) typically fell between 50% and 90%.

However, Memory bandwidth requirements were found to increase sharply as a result of the large
number of unnecessary prefetches generated by the stream buffers. To help mitigate this effect, a
small history buffer is used to record the most recent primary cache misses. When this history
buffer indicates that misses have occurred for both block b and block b + 1, a stream is allocated
and blocks b + 2, ..., b + K + 1 are prefetched into the buffer. Using this more selective stream
allocation policy, bandwidth requirements were reduced at the expense of some slightly reduced
stream buffer hit rates. The stream buffers described by Palacharla and Kessler were found to
provide an economical alternative to large secondary caches and were eventually incorporated into
the Cray T3E multiprocessor [26].

In general, sequential prefetching techniques require no changes to existing executables and can be
implemented with relatively simple hardware. Compared to software prefetching, sequential
hardware prefetching performs poorly when non-sequential memory access patterns are
encountered, however. Scalar references or array accesses with large strides can result in
unnecessary prefetches because these types of access patterns do not exhibit the spatial locality
upon which sequential prefetching is based. To enable prefetching of strided and other irregular
data access patterns, several more elaborate hardware prefetching techniques have been proposed.

4.2 Prefetching with arbitrary strides
Several techniques have been proposed which employ special logic to monitor the processor’s
address referencing pattern to detect constant stride array references originating from looping
structures [2,13,32]. This is accomplished by comparing successive addresses used by load or
store instructions. Chen and Baer’s scheme [7] is perhaps the most aggressive proposed thus
far. To illustrate its design, assume a memory instruction, mi, references addresses a1, a2 and a3

during three successive loop iterations. Prefetching for mi will be initiated if

()a a2 1 0− = ≠∆

where ∆ is now assumed to be the stride of a series of array accesses. The first prefetch address
will then be A a3 2= + ∆ where A3 is the predicted value of the observed address, a3. Prefetching
continues in this way until the equality A an n= no longer holds true.

Note that this approach requires the previous address used by a memory instruction to be stored
along with the last detected stride, if any. Recording the reference histories of every memory
instruction in the program is clearly impossible. Instead, a separate cache called the reference
prediction table (RPT) holds this information for only the most recently used memory instructions.
The organization of the RPT is given in Figure 8. Table entries contain the address of the memory
instruction, the previous address accessed by this instruction, a stride value for those entries which
have established a stride and a state field which records the entry’s current state. The state diagram
for RPT entries is given in Figure 9.

14

The RPT is indexed by the CPU’s program counter (PC). When memory instruction mi is
executed for the first time, an entry for it is made in the RPT with the state set to initial signifying
that no prefetching is yet initiated for this instruction. If mi is executed again before its RPT entry
has been evicted, a stride value is calculated by subtracting the previous address stored in the RPT
from the current effective address. To illustrate the functionality of the RPT, consider the matrix
multiply code and associated RPT entries given in Figure 10.

In this example, only the load instructions for arrays a, b and c are considered and it is assumed
that the arrays begin at addresses 10000, 20000 and 30000, respectively. For simplicity, one
word cache blocks are also assumed. After the first iteration of the innermost loop, the state of the
RPT is as given in Figure 10b where instruction addresses are represented by their pseudo-code
mnemonics. Since the RPT does not yet contain entries for these instructions, the stride fields are
initialized to zero and each entry is placed in an initial state. All three references result in a cache
miss.

After the second iteration, strides are computed as shown in Figure 10c. The entries for the array
references to b and c are placed in a transient state because the newly computed strides do not
match the previous stride. This state indicates that an instruction’s referencing pattern may be in
transition and a tentative prefetch is issued for the block at address effective address + stride if it
is not already cached. The RPT entry for the reference to array a is placed in a steady state
because the previous and current strides match. Since this entry’s stride is zero, no prefetching
will be issued for this instruction. Although the reference to array a hits in the cache due a demand
fetch in the previous iteration, the references to arrays b and c once again result in a cache miss.

During the third iteration, the entries for array references b and c move to the steady state when
the tentative strides computed in the previous iteration are confirmed. The prefetches issued during
the second iteration result in cache hits for the b and c references, provided that a prefetch distance

instruction tag previous address stride state

PC effective address

prefetch address

Figure 8. The organization of the reference prediction table.

15

of one is sufficient.

From the above discussion, it can be seen that the RPT improves upon sequential policies by
correctly handling strided array references. However, as described above, the RPT still limits the
prefetch distance to one loop iteration. To remedy this shortcoming, a distance field may be added
to the RPT which specifies the prefetch distance explicitly. Prefetch addresses would then be
calculated as

effective address + (stride × distance)

The addition of the distance field requires some method of establishing its value for a given RPT
entry. To calculate an appropriate value, Chen and Baer decouple the maintenance of the RPT
from its use as a prefetch engine. The RPT entries are maintained under the direction of the PC as
described above but prefetches are initiated separately by a pseudo program counter, called the
lookahead program counter (LA-PC) which is allowed to precede the PC. The difference between
the PC and LA-PC is then the prefetch distance, δ. Several implementation issues arise with the
addition of the lookahead program counter and the interested reader is referred to [2] for a
complete description.

In [8], Chen and Baer compared RPT prefetching to Mowry’s software prefetching scheme [25]
and found that neither method showed consistently better performance on a simulated shared
memory multiprocessor. Instead, it was found that performance depended on the individual
program characteristics of the four benchmark programs upon which the study was based.
Software prefetching was found to be more effective with certain irregular access patterns for
which an indirect reference is used to calculate a prefetch address. The RPT may not be able to
establish an access pattern for an instruction which uses an indirect address because the instruction
may generate effective addresses which are not separated by a constant stride. Also, the RPT is
less efficient at the beginning and end of a loop. Prefetches are issued by the RPT only after an
access pattern has been established. This means that no prefetches will be issued for array data for
at least the first two iterations. Chen and Baer also noted that it may take several iterations for the
RPT to achieve a prefetch distance that completely masks memory latency when the LA-PC was
used. Finally, the RPT will always prefetch past array bounds because an incorrect prediction is
necessary to stop subsequent prefetching. However, during loop steady state, the RPT was able to
dynamically adjust its prefetch distance to achieve a better overlap with memory latency than the
software scheme for some array access patterns. Also, software prefetching incurred instruction
overhead resulting from prefetch address calculation, fetch instruction execution and spill code.

initial steady

transient
no

prediction

Correct stride prediction

Incorrect stride prediction

Incorrect prediction with stride update

initial Start state. No prefetching.
transient Stride in transition. Tentative prefetch.
steady Constant Stride. Prefetch if stride ≠ 0.
no prediction

Stride indeterminate. No prefetching.

Figure 9. State transition graph for reference prediction table entries.

16

Dahlgren and Stenström [10] compared tagged and RPT prefetching in the context of a distributed
shared memory multiprocessor. By examining the simulated run-time behavior of six benchmark
programs, it was concluded that RPT prefetching showed limited performance benefits over tagged
prefetching, which tends to perform as well or better for the most common memory access patterns.
Dahlgren showed that most array strides were less than the block size and therefore were captured
by the tagged prefetch policy. In addition, it was found that some scalar references showed a
limited amount of spatial locality that could captured by the tagged prefetch policy but not by the
RPT mechanism. If memory bandwidth is limited, however, it was conjectured that the more
conservative RPT prefetching mechanism may be preferable since it tends to produce fewer useless
prefetches.

As with software prefetching, the majority of hardware prefetching mechanisms focus on very
regular array referencing patterns. There are some notable exceptions, however. Harrison and
Mehrotra [17] have proposed extensions to the RPT mechanism which allow for the prefetching of
data objects connected via pointers. This approach adds fields to the RPT which enable the
detection of indirect reference strides arising from structures such as linked lists and sparse
matrices. Joseph and Grunwald [18] have studied the use of a Markov predictor to drive a data
prefetcher. By dynamically recording sequences of cache miss references in a hardware table, the
prefetcher attempts to predict when a previous pattern of misses has begun to repeat itself. When

float a[100][100], b[100][100], c[100][100];

...

for (i = 0; i < 100; i++)
 for (j = 0; j < 100; j++)
 for (k = 0; k < 100; k++)
 a[i][j] += b[i][k] * c[k][j];

 (a)

Tag Previous Address Stride State
ld b[i][k] 20,000 0 initial
ld c[k][j] 30,000 0 initial
ld a[i][j] 10,000 0 initial

(b)

Tag Previous Address Stride State
ld b[i][k] 20,004 4 transient
ld c[k][j] 30,400 400 transient
ld a[i][j] 10,000 0 steady

(c)

Tag Previous Address Stride State
ld b[i][k] 20,008 4 steady
ld c[k][j] 30,800 400 steady
ld a[i][j] 10,000 0 steady

(d)

Figure 10. The RPT during execution of matrix multiply.

17

the current cache miss address is found in the table, prefetches for likely subsequent misses are
issued to a prefetch request queue. To prevent cache pollution and wasted memory bandwidth,
prefetch requests may be displaced from this queue by requests that belong to reference sequences
with higher a probability of occurring.

5. Integrating Hardware and Software Prefetching
Software prefetching relies exclusively on compile-time analysis to schedule fetch instructions
within the user program. In contrast, the hardware techniques discussed thus far infer prefetching
opportunities at run-time without any compiler or processor support. Noting that each of these
approaches has its advantages, some researchers have proposed mechanisms that combine elements
of both software and hardware prefetching.

Gornish and Veidenbaum [15] describe a variation on tagged hardware prefetching in which the
degree of prefetching (K) for a particular reference stream is calculated at compile time and passed
on to the prefetch hardware. To implement this scheme, a prefetching degree (PD) field is
associated with every cache entry. A special fetch instruction is provided that prefetches the
specified block into the cache and then sets the tag bit and the value of the PD field of the cache
entry holding the prefetched block. The first K blocks of a sequential reference stream are
prefetched using this instruction. When a tagged block, b, is demand fetched, the value in its PD
field, Kb, is added to the block address to calculate a prefetch address. The PD field of the newly
prefetched block is then set to Kb and the tag bit is set. This insures that the appropriate value of K
is propagated through the reference stream. Prefetching for non-sequential reference patterns is
handled by ordinary fetch instructions.

Zheng and Torrellas [39] suggest an integrated technique that enables prefetching for irregular data
structures. This is accomplished by tagging memory locations in such a way that a reference to one
element of a data object initiates a prefetch of either other elements within the referenced object or
objects pointed to by the referenced object. Both array elements and data structures connected via
pointers can therefore be prefetched. This approach relies on the compiler to initialize the tags in
memory, but the actual prefetching is handled by hardware within the memory system.

The use of a programmable prefetch engine has been proposed by Chen [6] as an extension to the
reference prediction table described in Section 4.2. Chen’s prefetch engine differs from the RPT in
that the tag, address and stride information are supplied by the program rather than being
dynamically established in hardware. Entries are inserted into the engine by the program before
entering looping structures that can benefit from prefetching. Once programmed, the prefetch
engine functions much like the RPT with prefetches being initiated when the processor’s program
counter matches one of the tag fields in the prefetch engine.

VanderWiel and Lilja [36] propose a prefetch engine that is external to the processor. The engine is
a general processor that executes its own program to prefetch data for the CPU. Through a shared
second-level cache, a producer-consumer relationship is established between the two processors in
which the engine prefetches new data blocks into the cache only after previously prefetched data
have been accessed by the compute processor. The processor also partially directs the actions of
the prefetch engine by writing control information to memory-mapped registers within the prefetch
engine’s support logic.

These integrated techniques are designed to take advantage of compile-time program information
without introducing as much instruction overhead as pure software prefetching. Much of the
speculation performed by pure hardware prefetching is also eliminated, resulting in fewer

18

unnecessary prefetches. Although no commercial systems yet support this model of prefetching, the
simulation studies used to evaluate the above techniques indicate that performance can be enhanced
over pure software or hardware prefetch mechanisms.

6. Prefetching in Multiprocessors
In addition to the prefetch mechanisms above, several multiprocessor-specific prefetching
techniques have been proposed. Prefetching in these systems differs from uniprocessors for at least
three reasons. First, multiprocessor applications are typically written using different programming
paradigms than uniprocessors. These paradigms can provide additional array referencing
information which enable more accurate prefetch mechanisms. Second, multiprocessor systems
frequently contain additional memory hierarchies which provide different sources and destinations
for prefetching. Finally, the performance implications of data prefetching can take on added
significance in multiprocessors because these systems tend to have higher memory latencies and
more sensitive memory interconnects.

Fu and Patel [12] examined how data prefetching might improve the performance of vectorized
multiprocessor applications. This study assumes vector operations are explicitly specified by the
programmer and supported by the instruction set. Because the vectorized programs describe
computations in terms of a series of vector and matrix operations, no compiler analysis or stride
detection hardware is required to establish memory access patterns. Instead, the stride information
encoded in vector references is made available to the processor caches and associated prefetch
hardware.

Two prefetching policies were studied. The first is a variation upon the prefetch-on-miss policy in
which K consecutive blocks following a cache miss are fetched into the processor cache. This
implementation of prefetch-on-miss differs from that presented earlier in that prefetches are issued
only for scalars and vector references with a stride less than or equal to the cache block size. The
second prefetch policy, which will be referred to as vector prefetching here, is similar to the first
policy with the exception that prefetches for vector references with large strides are also issued. If
the vector reference for block b misses in the cache, then blocks b, b + stride, b + (2 × stride), ...,
b + (K × stride) are fetched.

Fu and Patel found both prefetch policies improve performance over the no prefetch case on an
Alliant FX/8 simulator. Speedups were more pronounced when smaller cache blocks were assumed
since small block sizes limit the amount of spatial locality a non-prefetching cache can capture
while prefetching caches can offset this disadvantage by simply prefetching more blocks. In
contrast to other studies, Fu and Patel found both sequential prefetching policies were effective for
values of K up to 32. This is in apparent conflict with earlier studies which found sequential
prefetching to degrade performance for K > 1. Much of this discrepancy may be explained by
noting how vector instructions are exploited by the prefetching scheme used by Fu and Patel. In
the case of prefetch-on-miss, prefetching is suppressed when a large stride is specified by the
instruction. This avoids useless prefetches which degraded the performance of the original policy.
Although vector prefetching does issue prefetches for large stride referencing patterns, it is a more
precise mechanism than other sequential schemes since it is able to take advantage of stride
information provided by the program.

Comparing the two schemes, it was found that applications with large strides benefited the most
from vector prefetching, as expected. For programs in which scalar and unit-stride references
dominate, the prefetch-on-miss policy tended to perform slightly better. For these programs, the

19

lower miss ratios resulting from the vector prefetching policy were offset by the corresponding
increase in bus traffic.

Gornish, et. al. [14] examined prefetching in a distributed memory multiprocessor where global
and local memory are connected through a multistage interconnection network. Data are prefetched
from global to local memory in large, asynchronous block transfers to achieve higher network
bandwidth than would be possible with word-at-a-time transfers. Since large amounts of data are
prefetched, the data are placed in local memory rather than the processor cache to avoid excessive
cache pollution. Some form of software-controlled caching is assumed to be responsible for
translating global array addresses to local addresses after the data been placed in local memory.

As with software prefetching in single-processor systems, loop transformations are performed by
the compiler to insert prefetch operations into the user code. However, rather than inserting
fetch instructions for individual words within the loop body, entire blocks of memory are
prefetched before the loop is entered. Figure 11 shows how this block prefetching may be used
with a vector-matrix product calculation. In Figure 11b, the iterations of the original loop (Figure
11a) have been partitioned among NPROC processors of the multiprocessor system so that each
processor iterates over 1

NPROC th of a and c. Also note that the array c is prefetched a row at a
time. Although it is possible to pull out the prefetch for c so that the entire array is fetched into
local memory before entering the outermost loop, it is assumed here that c is very large and a
prefetch of the entire array would occupy more local memory than is available.

The block fetches given in Figure 11b will add processor overhead to the original computation in a
manner similar to the software prefetching scheme described earlier. Although the block-oriented
prefetch operations require size and stride information, significantly less overhead will be incurred
than with the word-oriented scheme since fewer prefetch operations will be needed. Assuming
equal problem sizes and ignoring prefetches for a, the loop given Figure 11 will generate N+1

block prefetches as compared to the 1
2

2N N+
� �

prefetches that would result from applying a

word-oriented prefetching scheme.

Although a single bulk data transfer is more efficient than dividing the transfer into several smaller
messages, the former approach will tend to increase network congestion when several such
messages are being transferred at once. Combined with the increased request rate prefetching
induces, this network contention can lead to significantly higher average memory latencies. For a

nrows = N/NPROC;

fetch(b[0:N-1]);
for(i=0; i < nrows; i++){

fetch(c[i][0:nrows-1]);
for(j=0; j < N; j++)

a[i] = a[i] + b[j]*c[i][j];
}

for(i=0; i < N; i++){
for(j=0; j < N; j++)

a[i] = a[i] + b[j]*c[i][j];
}

(b)

(a)

Figure 11. Block prefetching for a vector-matrix product calculation.

20

set of six numerical benchmark programs, Gornish noted that prefetching increased average
memory latency by a factor of between 5.3 and 12.7 over the no prefetch case.

An implication of prefetching into the local memory rather than the cache is that the array a in
Figure 11 cannot be prefetched. In general, this scheme requires that all data must be read-only
between prefetch and use because no coherence mechanism is provided which allows writes by one
processor to be seen by the other processors. Data transfers are also restricted by control
dependencies within the loop bodies. If an array reference is predicated by a conditional statement,
no prefetching is initiated for the array. This is done for two reasons. First, the conditional may
only test true for a subset of the array references and initiating a prefetch of the entire array would
result in the unnecessary transfer of a potentially large amount of data. Second, the conditional
may guard against referencing non-existent data and initiating a prefetch for such data could result
in unpredictable behavior.

Honoring the above data and control dependencies limits the amount of data which can be
prefetched. On average, 42% of loop memory references for the six benchmark programs used by
Gornish could not be prefetched due to these constraints. Together with the increased average
memory latencies, the suppression of these prefetches limited the speedup due to prefetching to less
than 1.1 for five of the six benchmark programs.

Mowry and Gupta [24] studied the effectiveness of software prefetching for the DASH DSM
multiprocessor architecture. In this study, two alternative designs were considered. The first
places prefetched data in a remote access cache (RAC) which lies between the interconnection
network and the processor cache hierarchy of each node in the system. The second design
alternative simply prefetched data from remote memory directly into the primary processor cache.
In both cases, the unit of transfer was a cache block.

The use of a separate prefetch cache such as the RAC is motivated by a desire to reduce contention
for the primary data cache. By separating prefetched data from demand-fetched data, a prefetch
cache avoids polluting the processor cache and provides more overall cache space. This approach
also avoids processor stalls that can result from waiting for prefetched data to be placed in the
cache. However, in the case of a remote access cache, only remote memory operations benefit
from prefetching since the RAC is placed on the system bus and access times are approximately
equal to those of main memory.

Simulation runs of three scientific benchmarks found that prefetching directly into the primary
cache offered the most benefit with an average speedup of 1.94 compared to an average of 1.70
when the RAC was used. Despite significantly increasing cache contention and reducing overall
cache space, prefetching into the primary cache resulted in higher cache hit rates, which proved to
be the dominant performance factor. As with software prefetching in single processor systems, the
benefit of prefetching was application-specific. Speedups for two array-based programs achieved
speedups over the non-prefetch case of 2.53 and 1.99 while the third, less regular, program showed
a speedup of 1.30.

7. Conclusions
Prefetching schemes are diverse. To help categorize a particular approach it is useful to answer
three basic questions concerning the prefetching mechanism: 1) When are prefetches initiated, 2)
where are prefetched data placed, and 3) what is prefetched?

21

When Prefetches can be initiated either by an explicit fetch operation within a program, by logic
that monitors the processor’s referencing pattern to infer prefetching, or by a combination
of these approaches. However they are initiated, prefetches must be issued in a timely
manner. If a prefetch is issued too early there is a chance that the prefetched data will
displace other useful data from the higher levels of the memory hierarchy or be displaced
itself before use. If the prefetch is issued too late, it may not arrive before the actual
memory reference and thereby introduce processor stall cycles. Prefetching mechanisms
also differ in their precision. Software prefetching issues fetches only for data that is
likely to be used while hardware schemes tend data in a more speculative manner.

Where The decision of where to place prefetched data in the memory hierarchy is a fundamental
design decision. Clearly, data must be moved into a higher level of the memory hierarchy
to provide a performance benefit. The majority of schemes place prefetched data in some
type of cache memory. Other schemes place prefetched data in dedicated buffers to protect
the data from premature cache evictions and prevent cache pollution. When prefetched
data are placed into named locations, such as processor registers or memory, the prefetch
is said to be binding and additional constraints must be imposed on the use of the data.
Finally, multiprocessor systems can introduce additional levels into the memory hierarchy
which must be taken into consideration.

What Data can be prefetched in units of single words, cache blocks, contiguous blocks of
memory or program data objects. Often, the amount of data fetched is determined by the
organization of the underlying cache and memory system. Cache blocks may be the most
appropriate size for uniprocessors and SMPs while larger memory blocks may be used to
amortize the cost of initiating a data transfer across an interconnection network of a large,
distributed memory multiprocessor.

These three questions are not independent of each other. For example, if the prefetch destination is
a small processor cache, data must be prefetched in a way that minimizes the possibility of
polluting the cache. This means that precise prefetches will need to be scheduled shortly before the
actual use and the prefetch unit must be kept small. If the prefetch destination is large, the timing
and size constraints can be relaxed.

Once a prefetch mechanism has been specified, it is natural to wish to compare it with other
schemes. Unfortunately, a comparative evaluation of the various proposed prefetching techniques
is hindered by widely varying architectural assumptions and testing procedures. However, some
general observations can be made.

The majority of prefetching schemes and studies concentrate on numerical, array-based
applications. These programs tend to generate memory access patterns that, although
comparatively predictable, do not yield high cache utilization and therefore benefit more from
prefetching than general applications. As a result, automatic techniques which are effective for
general programs remain largely unstudied.

To be effective, a prefetch mechanism must perform well for the most common types of memory
referencing patterns. Scalar and unit-stride array references typically dominate in most
applications and prefetching mechanisms should capture this type of access pattern. Sequential
prefetching techniques concentrate exclusively on these access patterns. Although comparatively
infrequent, large stride array referencing patterns can result in very poor cache utilization. RPT
mechanisms sacrifice some scalar performance in order to cover strided referencing patterns.
Software prefetching handles both types of referencing patterns but introduces instruction

22

overhead. Integrated schemes attempt to reduce instruction overhead while still offering better
prefetch coverage than pure hardware techniques.

Finally, memory systems must be designed to match the added demands prefetching imposes.
Despite a reduction in overall execution time, prefetch mechanisms tend to increase average
memory latency. This is a result of effectively increasing the memory reference request rate of the
processor thereby introducing congestion within the memory system. This particularly can be a
problem in multiprocessor systems where buses and interconnect networks are shared by several
processors.

Despite these application and system constraints, data prefetching techniques have produced
significant performance improvements on commercial systems. Efforts to improve and extend these
known techniques to more diverse architectures and applications is an active and promising area of
research. The need for new prefetching techniques is likely to continue to be motivated by
increasing memory access penalties arising from both the widening gap between microprocessor
and memory performance and the use of more complex memory hierarchies.

23

8. References
1. Anacker, W. and C. P. Wang, “Performance Evaluation of Computing Systems with Memory

Hierarchies,” IEEE Transactions on Computers, Vol. 16, No. 6, December 1967, p. 764-773.

2. Baer, J.-L. and T.-F. Chen, “An Effective On-chip Preloading Scheme to Reduce Data Access
Penalty,” Proc. Supercomputing '91, Albuquerque, NM, November 1991, p. 176-186.

3. Bernstein, D., C. Doron and A. Freund, “Compiler Techniques for Data Prefetching on the
PowerPC,” Proc. International Conf. on Parallel Architectures and Compilation Techniques,
June 1995, p. 19-16.

4. Callahan, D., K. Kennedy and A. Porterfield, “Software Prefetching,” Proc. Fourth
International Conf. on Architectural Support for Programming Languages and Operating
Systems, Santa Clara , CA, April 1991, p. 40-52.

5. Chan, K.K., et al., “Design of the HP PA 7200 CPU,” Hewlett-Packard Journal, Vol. 47, No.
1, February 1996, p. 25-33.

6. Chen, T-F., “An Effective Programmable Prefetch Engine for On-chip Caches,” Proc.
International Symposium on Microarchitcture, Ann Arbor, MI, November 1995, p. 237-242.

7. Chen T-F. and J-L. Baer, “Effective Hardware-Based Data Prefetching for High Performance
Processors,” IEEE Transactions on Computers, Vol. 44, No. 5, May 1995, p. 609-623.

8. Chen, T-F and J. L. Baer, “A Performance Study of Software and Hardware Data Prefetching
Schemes,” Proc. of the 21st Annual International Symposium on Computer Architecture,
Chicago, IL, April 1994, p. 223-232.

9. Chen, W.Y., S.A. Mahlke, P.P. Chang and W.W. Hwu, “Data Access Microarchitectures for
Superscalar Processors with Compiler-Assisted Data prefetching,” Proc. 24th International
Symposium on Microcomputing, Albuquerque, NM, November 1991, p. 69-73.

10. Dahlgren, F. and P. Stenstrom, “Effectiveness of Hardware-based Stride and Sequential
Prefetching in Shared-memory Multiprocessors,” Proc. First IEEE Symposium on High-
Performance Computer Architecture, Raleigh, NC, Jan. 1995, p. 68-77.

11. Dahlgren, F., M. Dubois and P. Stenstrom, “Fixed and Adaptive Sequential Prefetching in
Shared-memory Multiprocessors,” Proc. International Conference on Parallel Processing, St.
Charles, IL, August 1993, p. I-56-63.

12. Fu, J.W.C. and J.H. Patel, “Data Prefetching in Multiprocessor Vector Cache Memories,”
Proc. 18th International Symposium on Computer Architecture, Toronto, Ont., Canada, May
1991, p. 54-63.

13. Fu, J.W.C., J.H. Patel and B.L. Janssens, “Stride Directed Prefetching in Scalar Processors,”
Proc. 25th International Symposium on Microarchitecture, Portland, OR, December 1992, p.
102-110.

14. Gornish, E.H., E.D. Granston and A.V. Veidenbaum, “Compiler-directed Data Prefetching in
Multiprocessors with Memory Hierarchies,” Proc. International Conference on
Supercomputing, Amsterdam, Netherlands, June 1990, p. 354-68.

15. Gornish, E.H. and A.V. Veidenbaum, “An Integrated Hardware/Software Scheme for Shared-
Memory Multiprocessors,” Proc. International Conference on Parallel Processing, St.
Charles, IL, August 1994, p. II-281-284.

24

16. Gupta, A., Hennessy, J., Gharachorloo, K., Mowry, T. and Weber, W.- D., “Comparative
Evaluation of Latency Reducing and Tolerating Techniques,” Proc. 18th International
Symposium on Computer Architecture, Toronto, Ont., Canada, May 1991, p. 254-263.

17. Harrison, L. and S. Mehrotra, “A Data Prefetch Mechanism for Accelerating General
Computation,” Technical Report 1351, CSRD, University of Illinois at Urbana-Champaign,
Dept. of Computer Science, Urbana, IL, May 1994.

18. Joseph, D. and D. Grunwald. “Prefetching using Markov Predictors,” Proc. 24th International
Symposium on Computer Architecture, Denver, CO, June 1997, p. 252-263.

19. Jouppi, N.P., “Improving Direct-mapped Cache Performance by the Addition of a Small Fully-
associative Cache and Prefetch Buffers,” Proc. 17th International Symposium on Computer
Architecture, Seattle, WA, May 1990, p. 364-373.

20. Klaiber, A.C. and Levy, H.M., “An Architecture for Software-Controlled Data Prefetching,”
Proc. 18th International Symposium on Computer Architecture, Toronto, Ont., Canada, May
1991, p. 43-53.

21. Kroft, D., “Lockup-free Instruction Fetch/prefetch Cache Organization,” Proc. 8th
International Symposium on Computer Architecture, Minneapolis, MN, May 1981, p. 81-85.

22. Lipasti, M. H., W. J. Schmidt, S. R. Kunkel and R. R. Roediger, “SPAID: Software
Prefetching in Pointer and Call-Intensive Environments,” Proc. 28th International Symposium
on Microarchitecture, Ann Arbor, MI, November 1995, p. 231-236.

23. Luk, C-K. and T.C. Mowry, “Compiler-based Prefetching for Recursive Data Structures,”
Proc. 7th Conf. on Architectural Support for Programming Languages and Operating
Systems, Cambridge, MA, October 1996, p. 222-233.

24. Mowry, T. and A. Gupta, “Tolerating Latency through Software-controlled Prefetching in
Shared-memory Multiprocessors,” Journal of Parallel and Distributed Computing, Vol.12,
No.2, June 1991, p. 87-106.

25. Mowry, T.C., Lam, S. and Gupta, A., “Design and Evaluation of a Compiler Algorithm for
Prefetching,” Proc. Fifth International Conf. on Architectural Support for Programming
Languages and Operating Systems, Boston, MA, Sept. 1992, p. 62-73.

26. Oberlin, S., R. Kessler, S. Scott and G. Thorson, The Cray T3E Architecture Overview, Cray
Research Inc., Eagan, MN, 1996.

27. Palacharla, S. and R.E. Kessler, “Evaluating Stream Buffers as a Secondary Cache
Replacement,” Proc. 21st International Symposium on Computer Architecture, April 1994.

28. Patterson, R.H and G.A. Gibson, “Exposing I/O concurrency with informed prefetching,”
Proc. Third International Conf. on Parallel and Distributed Information Systems, Austin,
TX, September 1994, p. 7-16

29. Porterfield, A.K., Software Methods for Improvement of Cache Performance on
Supercomputer Applications. Ph.D. Thesis, Rice University, May 1989.

30. Przybylski, S., “The Performance Impact of Block Sizes and Fetch Strategies,” Proc. 17th
International Symposium on Computer Architecture, Seattle, WA, May 1990, p. 160-169.

31. Santhanam, V., E.H. Gornish and W.C. Hsu, “Data Prefetching on the HP PA-8000,” Proc.
24th International Symposium on Computer Architecture, Denver, CO, June 1997.

25

32. Sklenar, I., “Prefetch Unit for Vector Operations on Scalar Computers,” Proc. 19th
International Symposium on Computer Architecture, Gold Coast, Qld., Australia, May 1992,
p. 31-37.

33. Smith, A.J., “Sequential Program Prefetching in Memory Hierarchies,” IEEE Computer, Vol.
11, No. 12, December 1978, p. 7-21.

34. Smith, A.J., “Cache Memories,” Computing Surveys, Vol.14, No.3, September 1982, p. 473-
530.

35. VanderWiel, S.P., W.C. Hsu and D.J. Lilja, “When Caches are not Enough : Data Prefetching
Techniques,” IEEE Computer, Vol. 30, No. 7, July 1997, p.23-27.

36. VanderWiel, S.P. and D.J. Lilja, “Hiding Memory Latency with a Data Prefetch Engine,”
submitted to the 25th International Symposium on Computer Architecture, Barcelona, Spain,
June 1998.

37. Yeager, K.C., “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro, Vol. 16, No. 2,
April 1996, p. 28 - 41.

38. Young, H.C. and E.J. Shekita, “An intelligent I-cache prefetch mechanism,” Proc. IEEE
International Conference on Computer Design ICCD'93, Cambridge, MA, October 1993, p.
44-49.

39. Zhang, Z. and J. Torrellas, “Speeding up Irregular Applications in Shared-Memory
Multiprocessors: Memory Binding and Group Prefetching,” Proc. 22th International
Symposium on Computer Architecture, Santa Margherita Ligure, Italy, June 1995, p. 188-
199.

